A Simple Analytic Modeling Method for SPAD Timing Jitter Prediction

被引:24
作者
Sun, Feiyang [1 ]
Xu, Yue [1 ,2 ]
Wu, Zhong [1 ]
Zhang, Jun [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl & Local Joint Engn Lab RF Integrat & Microas, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Single photon avalanche diodes (SPADs); timing jitter; analytic model; jitter tail;
D O I
10.1109/JEDS.2019.2895151
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Timing jitter as a key performance of single-photon avalanche diode (SPAD) detectors plays a significant role in determining the fast temporal response behavior of the SPAD device. Nevertheless, few analytic models are developed to directly calculate the characteristic of timing jitter for its modeling difficulty. In this paper, we propose a simple analytic modeling method, which can predict the temporal response of SPADs, without using time-consuming Monte Carlo simulation. Model investigation incorporates avalanche current, avalanche buildup time, and jitter tail under different conditions. Furthermore, the key model parameters provided by Geiger mode technology computer-aided design simulation allow an accurate prediction on timing jitter. Analytical results indicate that for an SPAD device structure with a shallow P+/N-well junction in a 0.18-mu m CMOS technology, the Gaussian peak response with about 110-ps full-width at half-maximum and the exponential jitter tail are in good agreement with the measured data, validating the accuracy, and feasibility of this modeling method.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 20 条
[1]   SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review [J].
Bronzi, Danilo ;
Villa, Federica ;
Tisa, Simone ;
Tosi, Alberto ;
Zappa, Franco .
IEEE SENSORS JOURNAL, 2016, 16 (01) :3-12
[2]   Optical Crosstalk in InGaAs/InP SPAD Array: Analysis and Reduction With FIB-Etched Trenches [J].
Calandri, Niccolo ;
Sanzaro, Mirko ;
Motta, Lorenzo ;
Savoia, Claudio ;
Tosi, Alberto .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (16) :1767-1770
[3]  
Dadouche F., 2015 IEEE 13 INT NEW, P1
[4]  
Dolgos D., 2012, J APPL PHYS, V111, P1267
[5]   Modeling photon detection efficiency and temporal response of single photon avalanche diodes [J].
Gulinatti, Angelo ;
Rech, Ivan ;
Fumagalli, Silvia ;
Assanelli, Mattia ;
Ghioni, Massimo ;
Cova, Sergio D. .
PHOTON COUNTING APPLICATIONS, QUANTUM OPTICS, AND QUANTUM INFORMATION TRANSFER AND PROCESSING II, 2009, 7355
[6]   InP-Based Single-Photon Detectors and Geiger-Mode APD Arrays for Quantum Communications Applications [J].
Jiang, Xudong ;
Itzler, Mark ;
O'Donnell, Kevin ;
Entwistle, Mark ;
Owens, Mark ;
Slomkowski, Krystyna ;
Rangwala, Sabbir .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) :5-16
[7]   QUASISTATIC APPROXIMATION FOR SEMICONDUCTOR AVALANCHES [J].
KUVAS, R ;
LEE, CA .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (04) :1743-&
[8]  
Laforce F., 2009, P SOC PHOTO-OPT INS, V7212, P32
[9]   A High-PDE, Backside-Illuminated SPAD in 65/40-nm 3D IC CMOS Pixel With Cascoded Passive Quenching and Active Recharge [J].
Lindner, Scott ;
Pellegrini, Sara ;
Henrion, Yann ;
Rae, Bruce ;
Wolf, Martin ;
Charbon, Edoardo .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (11) :1547-1550
[10]   Evaluation of size influence on performance figures of a single photon avalanche diode fabricated in a 180 nm standard CMOS technology [J].
Malass, Imane ;
Uhring, Wilfried ;
Le Normand, Jean-Pierre ;
Dumas, Norbert ;
Dadouche, Foudil .
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2016, 89 (01) :69-76