Generation of a global synthetic tropical cyclone hazard dataset using STORM

被引:137
作者
Bloemendaal, Nadia [1 ]
Haigh, Ivan D. [2 ]
de Moel, Hans [1 ]
Muis, Sanne [1 ,3 ]
Haarsma, Reindert J. [4 ]
Aerts, Jeroen C. J. H. [1 ]
机构
[1] Vrije Univ Amsterdam, Inst Environm Studies IVM, NL-1081 HV Amsterdam, Netherlands
[2] Univ Southampton, Sch Ocean & Earth Sci, Natl Oceanog Ctr, European Way, Southampton SO14 3ZH, Hants, England
[3] Deltares, NL-2600 MH Delft, Netherlands
[4] Royal Netherlands Meteorol Inst KNMI, NL-3731 GA De Bilt, Netherlands
基金
荷兰研究理事会;
关键词
POTENTIAL INTENSITY; HURRICANE RISK; SIMULATION; FREQUENCY; MODEL;
D O I
10.1038/s41597-020-0381-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past few decades, the world has seen substantial tropical cyclone (TC) damages, with the 2017 Hurricanes Harvey, Irma and Maria entering the top-5 costliest Atlantic hurricanes ever. Calculating TC risk at a global scale, however, has proven difficult given the limited temporal and spatial information on TCs across much of the global coastline. Here, we present a novel database on TC characteristics on a global scale using a newly developed synthetic resampling algorithm we call STORM (Synthetic Tropical cyclOne geneRation Model). STORM can be applied to any meteorological dataset to statistically resample and model TC tracks and intensities. We apply STORM to extracted TCs from 38 years of historical data from IBTrACS to statistically extend this dataset to 10,000 years of TC activity. We show that STORM preserves the TC statistics as found in the original dataset. The STORM dataset can be used for TC hazard assessments and risk modeling in TC-prone regions.
引用
收藏
页数:12
相关论文
共 36 条
[11]   Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges [J].
Haigh, Ivan D. ;
MacPherson, Leigh R. ;
Mason, Matthew S. ;
Wijeratne, E. M. S. ;
Pattiaratchi, Charitha B. ;
Crompton, Ryan P. ;
George, Steve .
CLIMATE DYNAMICS, 2014, 42 (1-2) :139-157
[12]   Modeling tropical cyclone wave population of the Great Barrier Reef [J].
Hardy, TA ;
McConochie, JD ;
Mason, LB .
JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2003, 129 (03) :104-113
[13]  
Harper B., 2002, TROPICAL CYCLONE PAR, DOI DOI 10.13140/RG.2.2.13057.04961
[14]  
Harper B.A., 2008, Guidelines for converting between various wind averaging periods in tropical cyclone conditions
[15]  
Hersbach H., 2019, GLOBAL REANALYSIS GO, P17
[16]  
Holland GJ, 1997, J ATMOS SCI, V54, P2519, DOI 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO
[17]  
2
[18]   Synthetic tropical cyclone database [J].
James, MK ;
Mason, LB .
JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 2005, 131 (04) :181-192
[19]  
KAPLAN J, 1995, J APPL METEOROL, V34, P2499, DOI 10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO
[20]  
2