Correlation and independence in the neural code

被引:13
作者
Amari, Shun-ichi [1 ]
Nakahara, Hiroyuki [1 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Saitama 35101, Japan
关键词
t;
D O I
10.1162/neco.2006.18.6.1259
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The decoding scheme of a stimulus can be different from the stochastic encoding scheme in the neural population coding. The stochastic fluctuations are not independent in general, but an independent version could be used for the ease of decoding. How much information is lost by using this unfaithful model for decoding? There are discussions concerning loss of information (Nirenberg & Latham, 2003; Schneidman, Bialek, & Berry 2003). We elucidate the Nirenberg-Latham loss from the point of view of information geometry.
引用
收藏
页码:1259 / 1267
页数:9
相关论文
共 6 条
[1]  
AMARI S, 2005, UNPUB GEN BAYES PRED
[2]  
Amari SI, 2007, Methods of information geometry, V191
[3]   Synergy, redundancy, and independence in population codes, revisited [J].
Latham, PE ;
Nirenberg, S .
JOURNAL OF NEUROSCIENCE, 2005, 25 (21) :5195-5206
[4]   Decoding neuronal spike trains: How important are correlations? [J].
Nirenberg, S ;
Latham, PE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) :7348-7353
[5]  
Schneidman E, 2003, J NEUROSCI, V23, P11539
[6]   Population coding with correlation and an unfaithful model [J].
Wu, S ;
Nakahara, H ;
Amari, S .
NEURAL COMPUTATION, 2001, 13 (04) :775-797