Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury

被引:124
|
作者
Blattner, Simone M. [1 ]
Hodgin, Jeffrey B. [2 ]
Nishio, Masashi [1 ]
Wylie, Stephanie A. [2 ]
Saha, Jharna [1 ]
Soofi, Abdul A. [2 ]
Vining, Courtenay [1 ]
Randolph, Ann [1 ]
Herbach, Nadja [3 ]
Wanke, Ruediger [3 ]
Atkins, Kevin B. [1 ]
Kang, Hee Gyung [4 ]
Henger, Anna [1 ]
Brakebusch, Cord [5 ]
Holzman, Lawrence B. [6 ]
Kretzler, Matthias [1 ]
机构
[1] Univ Michigan, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[3] Ludwig Maximilians Univ Munchen, Inst Vet Pathol, Ctr Clin Vet Med, Munich, Germany
[4] Seoul Natl Univ Childrens Hosp, Dept Pediat, Seoul, South Korea
[5] Univ Copenhagen, Dept Mol Pathol, Copenhagen, Denmark
[6] Univ Penn, Dept Internal Med, Renal Electrolyte & Hypertens Div, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
cytoskeleton; glomerular disease; glomerular filtration barrier; podocyte; transgenic mouse; ACTIN REORGANIZATION; DIRECT TARGET; NEPHRIN; CYTOSKELETON; PROTEINURIA; ACTIVATION; MAINTENANCE; KIDNEYS; DISEASE; FAMILY;
D O I
10.1038/ki.2013.175
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here, we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood. Using the protamine sulfate model of acute podocyte injury, podocyte-specific deletion of Rac1 prevented foot process effacement. In a long-term model of chronic hypertensive glomerular damage, however, loss of Rac1 led to an exacerbation of albuminuria and glomerulosclerosis. In contrast, mice with podocyte-specific deletion of Cdc42 had severe proteinuria, podocyte foot process effacement, and glomerulosclerosis beginning as early as 10 days of age. In addition, slit diaphragm proteins nephrin and podocin were redistributed, and cofilin was dephosphorylated. Cdc42 is necessary for the maintenance of podocyte structure and function, but Rac1 is entirely dispensable in physiological steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury.
引用
收藏
页码:920 / 930
页数:11
相关论文
共 50 条
  • [1] Stage-Specific Functions of the Small Rho GTPases Cdc42 and Rac1 for Adult Hippocampal Neurogenesis
    Vadodaria, Krishna C.
    Brakebusch, Cord
    Suter, Ueli
    Jessberger, Sebastian
    JOURNAL OF NEUROSCIENCE, 2013, 33 (03): : 1179 - 1189
  • [2] A β1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases
    Mendoza-Naranjo, Ariadna
    Gonzalez-Billault, Christian
    Maccioni, Ricardo B.
    JOURNAL OF CELL SCIENCE, 2007, 120 (02) : 279 - 288
  • [3] Rac1 and Cdc42 GTPases as novel targets in ovarian cancer
    Wandinger-Ness, Angela
    Kenney, S. Ray
    Agola, Jacob
    Roxby, Joshua
    Surviladze, Zurab
    Silberberg, Melina
    Zeineldin, Reema
    Vestling, Anna
    Bologa, Cristian
    Ursu, Oleg
    Oprea, Tudor
    Muller, Carolyn
    Lomo, Lesley
    Sklar, Larry
    Hudson, Laurie G.
    CANCER RESEARCH, 2011, 71
  • [4] Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni
    Krause-Gruszczynska, Malgorzata
    Rohde, Manfred
    Hartig, Roland
    Genth, Harald
    Schmidt, Gudula
    Keo, Thormika
    Konig, Wolfgang
    Miller, William G.
    Konkel, Michael E.
    Backert, Steffen
    CELLULAR MICROBIOLOGY, 2007, 9 (10) : 2431 - 2444
  • [5] Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection
    Churin, Y
    Kardalinou, E
    Meyer, TF
    Naumann, M
    MOLECULAR MICROBIOLOGY, 2001, 40 (04) : 815 - 823
  • [6] Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1
    Kuroda, S
    Fukata, M
    Kobayashi, K
    Nakafuku, M
    Nomura, N
    Iwamatsu, A
    Kaibuchi, K
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (38) : 23363 - 23367
  • [7] BIOLOGICAL-ACTIVITIES OF MAMMALIAN RHO, RAC AND CDC42 GTPASES
    HALL, A
    BURBELO, P
    DIEKMANN, D
    HOTCHIN, N
    NOBES, C
    OLSON, M
    MOLECULAR BIOLOGY OF THE CELL, 1995, 6 : 1974 - 1974
  • [8] Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton
    Tapon, N
    Hall, A
    CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (01) : 86 - 92
  • [9] Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2
    Ozdemir, E. Sila
    Jang, Hyunbum
    Gursoy, Attila
    Keskin, Ozlem
    Li, Zhigang
    Sacks, David B.
    Nussinov, Ruth
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (10) : 3685 - 3699
  • [10] Characterizing the listeriolysin O-induced activation of the Rho GTPases Rac1 and Cdc42 in epithelial cells.
    Lam, J.
    Vadia, S.
    Seveau, S. M.
    MOLECULAR BIOLOGY OF THE CELL, 2015, 26