Fifth Generation Light Sources

被引:1
作者
Romaniuk, Ryszard S. [1 ]
机构
[1] Warsaw Univ Technol, Inst Elect Syst, PL-00661 Warsaw, Poland
来源
LASER TECHNOLOGY 2016: PROGRESS AND APPLICATIONS OF LASERS | 2016年 / 10159卷
关键词
light sources; synchrotron radiation; free electron laser; VUV radiation; X-rays; light source generations; superconducting accelerator; emittance; electron accumulation rings; laser-plasma acceleration; undulator; wiggler; FEL; inverted FEL; LASER;
D O I
10.1117/12.2248510
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Coherent light sources are one of the most fundamental research tools in biology, technology and in other areas. Synchrotron light source consists of a few basic parts: energy source - which is an electron beam accelerator, energy converter between electron and photon beams - which is an undulator, and photon user experimental lines. Each of these parts is separately a complex system, which is currently a subject to fast technological development. Future light sources of the fifth generation are based on completely new solutions of these fundamental parts, in comparison with the sources of the previous generations. Energy source is a new generation laser - plasma accelerator with electrical field in the area of multiple GV/m. A miniature undulator is tested in the MEMS technology from new materials. Classical light beam lines, vacuum, and difficult for management and beam distribution, change their meaning in the case of availability of miniature undulators positioned immediately at or even inside the experimental stations. After an introduction concerning the light sources of the previous generations, the article shows current research efforts on the mentioned key components of the fifth generation light sources. In some cases this is a continuation and modernization of the previous technologies, in the majority it is a brave endeavour to apply completely new technologies, like laser plasma acceleration.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] New source technologies and their impact on future light sources
    Carlsten, B. E.
    Colby, E. R.
    Esarey, E. H.
    Hogan, M.
    Kaertner, F. X.
    Graves, W. S.
    Leemans, W. P.
    Rao, T.
    Rosenzweig, J. B.
    Schroeder, C. B.
    Sutter, D.
    White, W. E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 622 (03) : 657 - 668
  • [22] Control of laser plasma accelerated electrons for light sources
    Andre, T.
    Andriyash, I. A.
    Loulergue, A.
    Labat, M.
    Roussel, E.
    Ghaith, A.
    Khojoyan, M.
    Thaury, C.
    Valleau, M.
    Briquez, F.
    Marteau, F.
    Tavakoli, K.
    N'Gotta, P.
    Dietrich, Y.
    Lambert, G.
    Malka, V.
    Benabderrahmane, C.
    Veteran, J.
    Chapuis, L.
    El Ajjouri, T.
    Sebdaoui, M.
    Hubert, N.
    Marcouille, O.
    Berteaud, P.
    Leclercq, N.
    El Ajjouri, M.
    Rommeluere, P.
    Bouvet, F.
    Duval, J. -P.
    Kitegi, C.
    Blache, F.
    Mahieu, B.
    Corde, S.
    Gautier, J.
    Ta Phuoc, K.
    Goddet, J. P.
    Lestrade, A.
    Herbeaux, C.
    Evain, C.
    Szwaj, C.
    Bielawski, S.
    Tafzi, A.
    Rousseau, P.
    Smartsev, S.
    Polack, F.
    Dennetiere, D.
    Bourassin-Bouchet, C.
    De Oliveira, C.
    Couprie, M. -E.
    NATURE COMMUNICATIONS, 2018, 9
  • [23] One way only to synchrotron light sources upgrade?
    Di Mitri, Simone
    JOURNAL OF SYNCHROTRON RADIATION, 2018, 25 : 1323 - 1334
  • [24] Legacy Light Sources: The Product Lifecycles of Pre-LED Light Sources
    Mucklejohn, Stuart
    Preston, Barry
    Scott, Martin
    Lister, Graeme
    Raynham, Peter
    IEEE INDUSTRY APPLICATIONS MAGAZINE, 2025, 31 (02) : 26 - 33
  • [25] Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources
    Sobierajski, R.
    Bruijn, S.
    Khorsand, A. R.
    Louis, E.
    de Kruijs, R. W. E. van
    Burian, T.
    Chalupsky, J.
    Cihelka, J.
    Gleeson, A.
    Grzonka, J.
    Gullikson, E. M.
    Hajkova, V.
    Hau-Riege, S.
    Juha, L.
    Jurek, M.
    Klinger, D.
    Krzywinski, J.
    London, R.
    Pelka, J. B.
    Plocinski, T.
    Rasinski, M.
    Tiedtke, K.
    Toleikis, S.
    Vysin, L.
    Wabnitz, H.
    Bijkerk, F.
    OPTICS EXPRESS, 2011, 19 (01): : 193 - 205
  • [26] The potential of future light sources to explore the structure and function of matter
    Weckert, Edgar
    IUCRJ, 2015, 2 : 230 - 245
  • [27] Fifth harmonic generation in a medium with cubic nonlinear response based on cascading third harmonic generation
    Trofimov, Vyacheslav A.
    Kharitonov, Dmitry M.
    Fedotov, Mikhail, V
    OPTICS AND LASER TECHNOLOGY, 2022, 146
  • [28] Directionally dependent light sources
    Albin, S
    Péroche, B
    WSCG 2003 SHORT PAPERS, PROCEEDINGS, 2003, : 1 - 8
  • [29] Coherent Light Sources at the Nanoscale
    Yang, Ankun
    Wang, Danqing
    Wang, Weijia
    Odom, Teri W.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 68, 2017, 68 : 83 - 99
  • [30] Investigation of warm dense matter using time-resolved X-ray absorption spectroscopy with third- and fourth- generation light sources
    Kang, Gyeongbo
    Cho, Byoung Ick
    CURRENT APPLIED PHYSICS, 2021, 30 : 58 - 68