Strong convergence theorems for a solution of finite families of equilibrium and variational inequality problems

被引:12
作者
Zegeye, H. [1 ]
Shahzad, N. [2 ]
机构
[1] Univ Botswana, Dept Math, Gaborone, Botswana
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
equilibrium problems; monotone mappings; relatively quasi-nonexpansive mappings; strong convergence; variational inequality problems; FIXED-POINT PROBLEMS; RELATIVELY NONEXPANSIVE-MAPPINGS; WEAK-CONVERGENCE; PROJECTION; OPERATORS;
D O I
10.1080/02331934.2011.635205
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce an iterative process for finding an element of common solutions of finite family of equilibrium problems and finite family of variational inequality problems for continuous monotone mappings in Banach spaces. Our theorems improve and unify most of the results that have been proved for this important class of non-linear operators.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 33 条
  • [1] Alber YI, 1996, LECT NOTES PURE APPL, P15
  • [2] Aoyama K., 2009, P 5 INT C NONL AN CO, V10, P7
  • [3] Projection and proximal point methods:: convergence results and counterexamples
    Bauschke, HH
    Matousková, E
    Reich, S
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) : 715 - 738
  • [4] A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces
    Bauschke, HH
    Combettes, PL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) : 248 - 264
  • [5] Blum E., 1994, Math. Stud., V63, P127
  • [6] Butnariu D., 2001, J APPL ANAL, V7, P151, DOI DOI 10.1515/JAA.2001.151
  • [7] Cioranescu I., 1990, Mathematics and Its Applications, V62
  • [8] Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
  • [9] Flam SD, 1997, MATH PROGRAM, V78, P29
  • [10] EXAMPLE CONCERNING FIXED-POINTS
    GENEL, A
    LINDENSTRAUSS, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (01) : 81 - 92