Prediction of Protein-Protein Interaction with Pairwise Kernel Support Vector Machine

被引:49
|
作者
Zhang, Shao-Wu [1 ,2 ]
Hao, Li-Yang [1 ]
Zhang, Ting-He [1 ]
机构
[1] Northwestern Polytech Univ, Coll Automat, Xian 710072, Peoples R China
[2] Minist Educ, Key Lab Informat Fus Technol, Xian 710072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
amino acid distance frequency; amino acid index distribution; protein-protein interaction; pairwise kernel function; support vector machine; AMINO-ACID-COMPOSITION; SUBCELLULAR LOCATION; SEQUENCES; CLASSIFICATION; INFORMATION; PARAMETERS; NETWORKS;
D O I
10.3390/ijms15023220
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein interactions (PPIs) play a key role in many cellular processes. Unfortunately, the experimental methods currently used to identify PPIs are both time-consuming and expensive. These obstacles could be overcome by developing computational approaches to predict PPIs. Here, we report two methods of amino acids feature extraction: (i) distance frequency with PCA reducing the dimension (DFPCA) and (ii) amino acid index distribution (AAID) representing the protein sequences. In order to obtain the most robust and reliable results for PPI prediction, pairwise kernel function and support vector machines (SVM) were employed to avoid the concatenation order of two feature vectors generated with two proteins. The highest prediction accuracies of AAID and DFPCA were 94% and 93.96%, respectively, using the 10 CV test, and the results of pairwise radial basis kernel function are considerably improved over those based on radial basis kernel function. Overall, the PPI prediction tool, termed PPI-PKSVM, which is freely available at http://159.226.118.31/PPI/index.html, promises to become useful in such areas as bio-analysis and drug development.
引用
收藏
页码:3220 / 3233
页数:14
相关论文
共 50 条
  • [1] Sequence-based protein-protein interaction prediction via support vector machine
    Yongcui Wang
    Jiguang Wang
    Zhixia Yang
    Naiyang Deng
    Journal of Systems Science and Complexity, 2010, 23 : 1012 - 1023
  • [2] Sequence-based protein-protein interaction prediction via support vector machine
    Wang, Yongcui
    Wang, Jiguang
    Yang, Zhixia
    Deng, Naiyang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (05) : 1012 - 1023
  • [3] Prediction of Protein-Protein Interaction Sites by Using Autocorrelation Descriptor and Support Vector Machine
    Ren, Xiao-Ming
    Xia, Jun-Feng
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 76 - 82
  • [4] Protein-protein interaction prediction based on sequence data by support vector machine with probability assignment
    Ye, JK
    Kulikowski, C
    Muchnik, I
    PROCEEDINGS OF THE 2005 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2005, : 318 - 324
  • [5] Hash Subgraph Pairwise Kernel for Protein-Protein Interaction Extraction
    Zhang, Yijia
    Lin, Hongfei
    Yang, Zhihao
    Wang, Jian
    Li, Yanpeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 1190 - 1202
  • [6] Determining Protein-Protein Interaction Using Support Vector Machine: A Review
    Chakraborty, Arijit
    Mitra, Sajal
    De, Debashis
    Pal, Anindya Jyoti
    Ghaemi, Ferial
    Ahmadian, Ali
    Ferrara, Massimiliano
    IEEE ACCESS, 2021, 9 : 12473 - 12490
  • [7] Prediction of protein-protein interaction sites using support vector machines
    Minakuchi, Y
    Satou, K
    Konagaya, A
    METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2003, : 22 - 28
  • [8] Prediction of protein-protein interaction sites using support vector machines
    Koike, A
    Takagi, T
    PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (02): : 165 - 173
  • [9] Effect of training datasets on support vector machine prediction of protein-protein interactions
    Lo, SL
    Cai, CZ
    Chen, YZ
    Chung, MCM
    PROTEOMICS, 2005, 5 (04) : 876 - 884
  • [10] Predicting protein-protein interaction sites using modified support vector machine
    Guo, Hong
    Liu, Bingjing
    Cai, Danli
    Lu, Tun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (03) : 393 - 398