Gold nanowire assembling architecture for H2O2 electrochemical sensor

被引:111
|
作者
Guo, Shaojun [1 ,2 ]
Wen, Dan [1 ,2 ]
Dong, Shaojun [1 ,2 ]
Wang, Erkang [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
美国国家科学基金会;
关键词
Electrochemical sensor; Nanomaterial; Hierarchical; Self-assembly; Gold nanowire; HORSERADISH-PEROXIDASE; HYDROGEN-PEROXIDE; CITRATE REDUCTION; NANOPARTICLES; BIOSENSOR; CHEMILUMINESCENCE; FACILE; ARRAYS;
D O I
10.1016/j.talanta.2008.09.042
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Morphological control of nanomaterials is of great interest due to their size and shape-dependent chemical and physical properties and very important applications in many fields such as biomedicine, sensors, electronics and others. In this paper, we reported a simple strategy for synthesizing gold nanowire assembling architecture at room temperature. It is found that two important factors, the proper volume ratio of ethanol to water and poly(vinyl pyrrolidone) (PVP), will play important roles in synthesizing flower-like short gold nanowire assembling spheres. Furthermore, the obtained flower-like gold assembling spheres with high surface-to-volume ratio have been employed as enhancing materials for electrochemical sensing H2O2. The present electrochemical sensing platform exhibited good electrocatalytic activity towards the reduction of H2O2. The detection limit for H2O2 was found to be 1.2 mu M, which was lower than certain enzyme-based biosensors. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1510 / 1517
页数:8
相关论文
共 50 条
  • [21] Fast and Stable Electrochemical Production of H2O2 by Electrode Architecture Engineering
    Xu, Wenwen
    Liang, Zheng
    Gong, Shun
    Zhang, Baoshan
    Wang, Hui
    Su, Linfeng
    Chen, Xu
    Han, Nana
    Tian, Ziqi
    Kallio, Tanja
    Chen, Liang
    Lu, Zhiyi
    Sun, Xiaoming
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (20) : 7120 - 7129
  • [22] A polydopamine derivative monolayer on gold electrode for electrochemical catalysis of H2O2
    Zhang, Na
    Ma, Wei
    He, Pin-Gang
    Long, Yi-Tao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 739 : 197 - 201
  • [23] Non-Enzymatic CO3O4 Nanostructure-Based Electrochemical Sensor for H2O2 Detection
    Mizers, V.
    Gerbreders, V.
    Krasovska, M.
    Sledevskis, E.
    Mihailova, I.
    Ogurcovs, A.
    Bulanovs, A.
    Gerbreders, A.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2023, 60 (06) : 63 - 84
  • [24] MWCNT Based Non-Enzymatic H2O2 Sensor: Influence of Amine Functionalization on the Electrochemical H2O2 Sensing
    Revathi, C.
    Rajavel, K.
    Saranya, M.
    Kumar, R. T. Rajendra
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) : B627 - B632
  • [25] Sensing performance of a self-powered electrochemical sensor for H2O2 detection based on microbial fuel cell
    Liu, Weifeng
    Yin, Lin
    Jin, Qi
    Zhu, Yimin
    Zhao, Jiao
    Zheng, Libiao
    Zhou, Zihao
    Zhu, Bin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 832 : 97 - 104
  • [26] Assembling of Gold Nanoparticles in Core-Shell Zeolite Imidazolate Framework Crystals for In Situ Electrochemical Detection of H2O2 Released from Living Cells
    Wang, Zekun
    Yan, Liyan
    Liu, Ying
    Wang, Jun
    Li, Dongxiang
    Wang, Yiwei
    Wang, Xiaoyu
    Li, Lin
    Regmi, Sagar
    Ju, Jian
    Zhan, Tianrong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (43) : 15556 - 15565
  • [27] H2O2 Electrochemistry Biosensor Based on Graphene and Gold Nanorods Composites
    Li Li
    Lu Hong-Mei
    Deng Liu
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2013, 41 (05) : 719 - 724
  • [28] Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection
    Yagati, Ajay Kumar
    Lee, Taek
    Min, Junhong
    Choi, Jeong-Woo
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 92 : 161 - 167
  • [29] Synthesis and size-dependent electrochemical nonenzymatic H2O2 sensing of cuprous oxide nanocubes
    Meng, Lingyu
    Jiang, Deli
    Xing, Chaosheng
    Lu, Xiaomeng
    Chen, Min
    RSC ADVANCES, 2015, 5 (100) : 82496 - 82502
  • [30] Ag-Cu nanoalloys: An electrochemical sensor for H2O2 detection
    Shafa, Muhammad
    Ahmad, Iqbal
    Hussain, Shahid
    Asif, Muhammad
    Pan, Yi
    Zairov, Rustem
    Alothman, Asma A.
    Ouladsmane, Mohamed
    Ullah, Zahid
    Ullah, Nabi
    Lai, Chen
    Jabeen, Uzma
    SURFACES AND INTERFACES, 2023, 36