Strong duality in robust semi-definite linear programming under data uncertainty

被引:12
|
作者
Jeyakumar, V. [1 ]
Li, G. Y. [1 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
robust optimization; semi-definite programming under uncertainty; strong duality; linear matrix inequality problems; 90C22; 90C25; 90C46; OPTIMIZATION;
D O I
10.1080/02331934.2012.690760
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article develops the deterministic approach to duality for semi-definite linear programming problems in the face of data uncertainty. We establish strong duality between the robust counterpart of an uncertain semi-definite linear programming model problem and the optimistic counterpart of its uncertain dual. We prove that strong duality between the deterministic counterparts holds under a characteristic cone condition. We also show that the characteristic cone condition is also necessary for the validity of strong duality for every linear objective function of the original model problem. In addition, we derive that a robust Slater condition alone ensures strong duality for uncertain semi-definite linear programs under spectral norm uncertainty and show, in this case, that the optimistic counterpart is also computationally tractable.
引用
收藏
页码:713 / 733
页数:21
相关论文
共 50 条
  • [1] Strong duality in parametric robust semi-definite linear programming and exact relaxations
    Sisarat, Nithirat
    Wangkeeree, Rattanaporn
    Wangkeeree, Rabian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (02) : 477 - 490
  • [2] A Semi-Definite Programming Approach to Robust Adaptive MPC under State Dependent Uncertainty
    Bujarbaruah, Monimoy
    Nair, Siddharth H.
    Borrelli, Francesco
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 960 - 965
  • [3] Duality for semi-definite and semi-infinite programming
    Li, SJ
    Yang, XQ
    Teo, KL
    OPTIMIZATION, 2003, 52 (4-5) : 507 - 528
  • [4] Affinely adjustable robust optimization for radiation therapy under evolving data uncertainty via semi-definite programming
    Jeyakumar, V.
    Li, G.
    Woolnough, D.
    Wu, H.
    OPTIMIZATION, 2024, 73 (06) : 1807 - 1832
  • [5] Robust linear semi-infinite programming duality under uncertainty
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Lopez, M. A.
    MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 185 - 203
  • [6] Robust linear semi-infinite programming duality under uncertainty
    M. A. Goberna
    V. Jeyakumar
    G. Li
    M. A. López
    Mathematical Programming, 2013, 139 : 185 - 203
  • [7] A semi-definite programming approach for robust tracking
    Shimrit Shtern
    Aharon Ben-Tal
    Mathematical Programming, 2016, 156 : 615 - 656
  • [8] A semi-definite programming approach for robust tracking
    Shtern, Shimrit
    Ben-Tal, Aharon
    MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 615 - 656
  • [9] Linear programming with positive semi-definite matrices
    Lasserre, JB
    MATHEMATICAL PROBLEMS IN ENGINEERING, 1996, 2 (06) : 499 - 522
  • [10] Duality for semi-definite and semi-infinite programming with equality constraints
    Li, SJ
    Yang, XQ
    Teo, KL
    Optimization And Control With Applications, 2005, 96 : 115 - 125