The FLUXCOM ensemble of global land-atmosphere energy fluxes

被引:457
作者
Jung, Martin [1 ]
Koirala, Sujan [1 ]
Weber, Ulrich [1 ]
Ichii, Kazuhito [2 ,3 ]
Gans, Fabian [1 ]
Camps-Valls, Gustau [4 ]
Papale, Dario [5 ]
Schwalm, Christopher [6 ]
Tramontana, Gianluca [5 ]
Reichstein, Markus [1 ]
机构
[1] Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany
[2] Chiba Univ, Ctr Environm Remote Sensing, Inage Ku, 1-33 Yayoi Cho, Chiba 2360001, Japan
[3] Natl Inst Environm Studies, Ctr Global Environm Res, 16-2 Onogawa, Tsukuba, Ibaraki 3050053, Japan
[4] Univ Valencia, IPL, C Catedrat Jose Beltran 2, Valencia 46980, Spain
[5] Univ Tuscia, DIBAF, Via C de Lellis Snc, I-01100 Viterbo, Italy
[6] Woods Hole Res Ctr, 149 Woods Hole Rd, Falmouth, MA 02540 USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
CARBON-DIOXIDE; HEAT-FLUX; SURFACE; WATER; EVAPORATION; PRODUCTS; PROJECT; MODEL; INTERCEPTION; VALIDATION;
D O I
10.1038/s41597-019-0076-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although a key driver of Earth's climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833 degrees resolution using MODIS remote sensing data (RS) and (2) 0.5 degrees resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For RS and RS + METEO setups respectively, we estimate 2001-2013 global (+/- 1s.d.) net radiation as 75.49 +/- 1.39 W m(-2) and 77.52 +/- 2.43 W m(-2), sensible heat as 32.39 +/- 4.17 W m(-2) and 35.58 +/- 4.75 W m(-2), and latent heat flux as 39.14 +/- 6.60 W m(-2) and 39.49 +/- 4.51 W m(-2) (as evapotranspiration, 75.6 +/- 9.8 x 10(3) km(3) yr(-1) and 76 +/- 6.8 x 10(3) km(3) yr(-1)). FLUXCOM products are suitable to quantify global land-atmosphere interactions and benchmark land surface model simulations.
引用
收藏
页数:14
相关论文
共 55 条
[1]   Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems [J].
Baldocchi, Dennis .
AUSTRALIAN JOURNAL OF BOTANY, 2008, 56 (01) :1-26
[2]   Climate-driven uncertainties in modeling terrestrial energy and water fluxes: a site-level to global-scale analysis [J].
Barman, Rahul ;
Jain, Atul K. ;
Liang, Miaoling .
GLOBAL CHANGE BIOLOGY, 2014, 20 (06) :1885-1900
[3]   Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data [J].
Bonan, Gordon B. ;
Lawrence, Peter J. ;
Oleson, Keith W. ;
Levis, Samuel ;
Jung, Martin ;
Reichstein, Markus ;
Lawrence, David M. ;
Swenson, Sean C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
[4]   Geostationary Enhanced Temporal Interpolation for CERES Flux Products [J].
Doelling, David R. ;
Loeb, Norman G. ;
Keyes, Dennis F. ;
Nordeen, Michele L. ;
Morstad, Daniel ;
Nguyen, Cathy ;
Wielicki, Bruce A. ;
Young, David F. ;
Sun, Moguo .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (06) :1072-1090
[5]   Assessment of MERRA-2 Land Surface Energy Flux Estimates [J].
Draper, Clara S. ;
Reichle, Rolf H. ;
Koster, Randal D. .
JOURNAL OF CLIMATE, 2018, 31 (02) :671-691
[6]   MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets [J].
Friedl, Mark A. ;
Sulla-Menashe, Damien ;
Tan, Bin ;
Schneider, Annemarie ;
Ramankutty, Navin ;
Sibley, Adam ;
Huang, Xiaoman .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (01) :168-182
[7]   Estimating photosynthetically available radiation at the ocean surface from ADEOS-II Global Imager data [J].
Frouin, Robert ;
Murakami, Hiroshi .
JOURNAL OF OCEANOGRAPHY, 2007, 63 (03) :493-503
[8]   NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space [J].
Gao, BC .
REMOTE SENSING OF ENVIRONMENT, 1996, 58 (03) :257-266
[9]   Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J].
Huete, A ;
Didan, K ;
Miura, T ;
Rodriguez, EP ;
Gao, X ;
Ferreira, LG .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :195-213
[10]  
Huffman GJ, 2001, J HYDROMETEOROL, V2, P36, DOI 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO