Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation

被引:18
|
作者
Lee, Moon Hwan [1 ]
Lew, Hah Min [1 ,2 ]
Youn, Sangyeon
Kim, Tae [3 ]
Hwang, Jae Youn [4 ]
机构
[1] Daegu Gyeongbuk Institue Sci & Technol DGIST, Dept Elect Engn & Comp Sci, Daegu 42988, South Korea
[2] KLleon R&D Ctr, Deep Learning Res Team, Seoul 04637, South Korea
[3] Gwangju Inst Sci & Technol, Dept Biomed Sci & Engn, Gwangju 61005, South Korea
[4] Daegu Gyeongbuk Inst Sci & Technol, Dept Elect Engn & Comp Sci, Interdisciplinary Studies Artificial Intelligence, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
2-D arrays; acoustic hologram; autoencoder; deep learning; holographic lens; ALGORITHM; ARRAY; IMAGE;
D O I
10.1109/TUFFC.2022.3219401
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustic holography has been gaining attention for various applications, such as noncontact particle manipulation, noninvasive neuromodulation, and medical imaging. However, only a few studies on how to generate acoustic holograms have been conducted, and even conventional acoustic hologram algorithms show limited performance in the fast and accurate generation of acoustic holograms, thus hindering the development of novel applications. We here propose a deep learning-based framework to achieve fast and accurate acoustic hologram generation. The framework has an autoencoder-like architecture; thus, the unsupervised training is realized without any ground truth. For the framework, we demonstrate a newly developed hologram generator network, the holographic ultrasound generation network (HU-Net), which is suitable for unsupervised learning of hologram generation, and a novel loss function that is devised for energy-efficient holograms. Furthermore, for considering various hologram devices (i.e., ultrasound transducers), we propose a physical constraint (PC) layer. Simulation and experimental studies were carried out for two different hologram devices, such as a 3-D printed lens, attached to a single element transducer, and a 2-D ultrasound array. The proposed framework was compared with the iterative angular spectrum approach (IASA) and the state-of-the-art (SOTA) iterative optimization method, Diff-PAT. In the simulation study, our framework showed a few hundred times faster generation speed, along with comparable or even better reconstruction quality, than those of IASA and Diff-PAT. In the experimental study, the framework was validated with 3-D printed lenses fabricated based on different methods, and the physical effect of the lenses on the reconstruction quality was discussed. The outcomes of the proposed framework in various cases (i.e., hologram generator networks, loss functions, and hologram devices) suggest that our framework may become a very useful alternative tool for other existing acoustic hologram applications, and it can expand novel medical applications.
引用
收藏
页码:3353 / 3366
页数:14
相关论文
共 50 条
  • [31] A Deep Learning-based Framework for Vehicle License Plate Detection
    Yang, Deming
    Yang, Ling
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1009 - 1018
  • [32] Deep learning-based framework for tumour detection and semantic segmentation
    Kot, Estera
    Krawczyk, Zuzanna
    Siwek, Krzysztof
    Krolicki, Leszek
    Czwarnowski, Piotr
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2021, 69 (03)
  • [33] A Deep Learning-Based Framework for Intersectional Traffic Simulation and Editing
    Bi, Huikun
    Mao, Tianlu
    Wang, Zhaoqi
    Deng, Zhigang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (07) : 2335 - 2348
  • [34] A Deep Learning-Based Framework for Damage Detection With Time Series
    Yang, Qun
    Shen, Dejian
    Du, Wencai
    Li, Weijun
    IEEE ACCESS, 2021, 9 : 66570 - 66586
  • [35] Automatic topology and capacity generation framework for urban drainage systems with deep learning-based land use segmentation and hydrological characterization
    Zhong, Qisheng
    Situ, Zuxiang
    Zhou, Qianqian
    Xiao, Jing
    Xu, Xinyi
    Feng, Wanen
    Jiang, Shuxian
    Su, Jiongheng
    JOURNAL OF HYDROLOGY, 2024, 641
  • [36] Securing the internet of vehicles: A deep learning-based classification framework
    Alladi, Tejasvi
    Kohli, Varun
    Chamola, Vinay
    Yu, F. Richard
    IEEE Networking Letters, 2021, 3 (02): : 94 - 97
  • [37] A Deep Reinforcement Learning-Based Framework for PolSAR Imagery Classification
    Nie, Wen
    Huang, Kui
    Yang, Jie
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] A Deep Learning-Based Interactive Medical Image Segmentation Framework
    Mikhailov, Ivan
    Chauveau, Benoit
    Bourdel, Nicolas
    Bartoli, Adrien
    APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2022, 2022, 13540 : 98 - 107
  • [39] Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images
    Karimi, Davood
    Zeng, Qi
    Mathur, Prateek
    Avinash, Apeksha
    Mandavi, Sara
    Spadinger, Ingrid
    Abolmaesumi, Purang
    Salcudean, Septimiu E.
    MEDICAL IMAGE ANALYSIS, 2019, 57 : 186 - 196
  • [40] Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density
    Horiuchi, Ryota
    Kamimura, Asuka
    Hanaki, Yuga
    Matsumoto, Hikari
    Ueda, Minako
    Higaki, Takumi
    PROTOPLASMA, 2024,