A Trifunctional Separator Based on a Blockage-Adsorption-Catalysis Synergistic Effect for Li-S Batteries

被引:32
作者
Xian, Chunxiang [1 ]
Jing, Peng [1 ]
Pu, Xinghong [1 ]
Wang, Guochuan [1 ]
Wang, Qian [1 ]
Wu, Hao [1 ]
Zhang, Yun [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
partially etched nitrogenous carbon-coated ZnS; blockage-adsorption-catalysis synergistic effect; trifunctional separator; lithium-sulfur battery; LITHIUM-SULFUR BATTERIES; PERFORMANCE; CARBON; POLYSULFIDE; INTERLAYER; SHUTTLE; CATHODE; PRINCIPLES; NITROGEN; ROUTE;
D O I
10.1021/acsami.0c14645
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To address the obstinate problem of the shuttle effect in lithium-sulfur (Li-S) batteries, cathode materials are usually given multifunctions to immobilize sulfur, which increases the processing difficulty of cathode materials and weakens the advantage in energy density of Li-S batteries. Herein, a singlesource decomposition approach is employed to synthesize a pomegranate-like nitrogenous carbon-coated ZnS (ZnS@NC) precursor that is acid etched to obtain the partially etched ZnS@NC (PE-ZnS@NC) composite. PE-ZnS@NC is coated on a commercial PP separator to a fabricate PE-ZnS@NC/PP functional separator that is used to assemble a coin cell with the sulfur/super P cathode. The 3D network carbon framework of PE-ZnS@ NC provides additional active sites for electrochemical reaction and a space barrier for the diffusion of the dissolved lithium polysulfides (LPS). Well-distributed N-containing functional groups and polar ZnS could chemically anchor LPS. Also, the ZnS nanoparticles inside could facilitate a fast kinetic process by catalyzing the liquid-liquid and liquid-solid conversion. Since the shuttle effect is greatly suppressed by the synergistic trifunctions of blockage-chemisorption catalysis, PE-ZnS@NC/PP delivers remarkable electrochemical performances that a self-discharge rate of 0.4% per day is achieved in the shelving test and a capacity retention of 97.0% is gained after 50 cycles at 0.5 C, under a sulfur-areal density of around 3 mg cm(-2).
引用
收藏
页码:47599 / 47611
页数:13
相关论文
共 63 条
[1]   Plasma-functionalized carbon-layered separators for improved performance of lithium sulfur batteries [J].
Ahn, Jee Hun ;
Shin, Hyun-Jin ;
Abbas, Saleem ;
Lee, Kwan-Young ;
Ha, Heung Yong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3772-3782
[2]   Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis [J].
Babu, Ganguli ;
Masurkar, Nirul ;
Al Salem, Hesham ;
Arave, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :171-178
[3]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[4]   Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium-Sulfur Batteries [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (33) :5285-5291
[5]   Reduced polysulfide shuttle in lithium-sulfur batteries using Nafion-based separators [J].
Bauer, I. ;
Thieme, S. ;
Brueckner, J. ;
Althues, H. ;
Kaskel, S. .
JOURNAL OF POWER SOURCES, 2014, 251 :417-422
[6]   Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (33) :5299-5306
[7]   High-Performance Li-S Batteries with an Ultra-lightweight MWCNT-Coated Separator [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (11) :1978-1983
[8]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[9]   A review on separators for lithium-sulfur battery: Progress and prospects [J].
Deng, Nanping ;
Kang, Weimin ;
Liu, Yanbo ;
Ju, Jingge ;
Wu, Dayong ;
Li, Lei ;
Hassan, Bukhari Samman ;
Cheng, Bowen .
JOURNAL OF POWER SOURCES, 2016, 331 :132-155
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935