Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method

被引:2
|
作者
Yu, Haiqing [1 ]
Chen, Zhi [1 ]
Zhang, Heye [2 ]
Wong, Kelvin Kian Loong [3 ]
Chen, Yunmei [4 ]
Liu, Huafeng [1 ]
机构
[1] Zhejiang Univ, Dept Opt Engn, Hangzhou 310003, Zhejiang, Peoples R China
[2] Shenzhen Inst Adv Technol, Shenzhen, Guangdong, Peoples R China
[3] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley, Australia
[4] Univ Florida, Dept Math, Gainesville, FL 32611 USA
来源
PLOS ONE | 2015年 / 10卷 / 09期
基金
中国国家自然科学基金;
关键词
TOTAL VARIATION REGULARIZATION; POSITRON-EMISSION-TOMOGRAPHY; WHOLE-BODY PET; IMAGE-RECONSTRUCTION; 3-D PET; ALGORITHMS; PERFORMANCE; SCANNER; ACCELERATION; SYSTEM;
D O I
10.1371/journal.pone.0138483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a total variation (TV) regularized reconstruction algorithm for 3D positron emission tomography (PET). The proposed method first employs the Fourier rebinning algorithm (FORE), rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV) based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS). Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF) (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] 3D TOF-PET image reconstruction using total variation regularization
    Raczynski, L.
    Wislicki, W.
    Klimaszewski, K.
    Krzemien, W.
    Kopka, P.
    Kowalski, P.
    Shopa, R. Y.
    Bala, M.
    Chhokar, J.
    Curceanu, C.
    Czerwinski, E.
    Dulski, K.
    Gajewski, J.
    Gajos, A.
    Gorgol, M.
    Del Grande, R.
    Hiesmayr, B.
    Jasinska, B.
    Kacprzak, K.
    Kaplon, L.
    Kisielewska, D.
    Korcyl, G.
    Kozik, T.
    Krawczyk, N.
    Kubicz, E.
    Mohammed, M.
    Niedzwiecki, S. Z.
    Palka, M.
    Pawlik-Niedzwiecka, M.
    Raj, J.
    Rakoczy, K.
    Rucinski, A.
    Sharma, S.
    Shivani, S.
    Silarski, M.
    Skurzok, M.
    Stepien, E. L.
    Zgardzinska, B.
    Moskal, P.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 80 : 230 - 242
  • [2] Real-Time 3D PET Image with Pseudoinverse Reconstruction
    Lopez-Montes, Alejandro
    Galve, Pablo
    Manuel Udias, Jose
    Cal-Gonzalez, Jacobo
    Jose Vaquero, Juan
    Desco, Manuel
    Herraiz, Joaquin L.
    APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [3] Gap compensation during PET image reconstruction by constrained, total variation minimization
    Ahn, Seonmin
    Kim, Soo Mee
    Son, Jungah
    Lee, Dong Soo
    Lee, Jae Sung
    MEDICAL PHYSICS, 2012, 39 (02) : 589 - 602
  • [4] A Direct Material Reconstruction Method for DECT Based on Total Variation and BM3D Frame
    Zhang, Wenkun
    Cai, Ailong
    Zheng, Zhizhong
    Wang, Linyuan
    Liang, Ningning
    Li, Lei
    Yan, Bin
    Hu, Guoen
    IEEE ACCESS, 2019, 7 (138579-138592) : 138579 - 138592
  • [5] Nonlocal Low-Rank and Total Variation Constrained PET Image Reconstruction
    Xie, Nuobei
    Chen, Yunmei
    Liu, Huafeng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3874 - 3879
  • [6] 3D PET image reconstruction based on the maximum likelihood estimation method (MLEM) algorithm
    Slomski, Artur
    Rudy, Zbigniew
    Bednarski, Tomasz
    Bialas, Piotr
    Czerwinski, Eryk
    Kaplon, Lukasz
    Kochanowski, Andrzej
    Korcyl, Grzegorz
    Kowal, Jakub
    Kowalski, Pawel
    Kozik, Tomasz
    Krzemien, Wojciech
    Molenda, Marcin
    Moskal, Pawel
    Niedzwiecki, Szymon
    Palka, Marek
    Pawlik, Monika
    Raczynski, Lech
    Salabura, Piotr
    Gupta-Sharma, Neha
    Silarski, Michal
    Smyrski, Jerzy
    Strzelecki, Adam
    Wislicki, Wojciech
    Zielinski, Marcin
    Zon, Natalia
    BIO-ALGORITHMS AND MED-SYSTEMS, 2014, 10 (01) : 1 - 7
  • [7] 3D RECONSTRUCTION OF POINT-LIKE SOURCES IN A J-PET SCANNER USING TOTAL VARIATION REGULARIZATION
    Raczynski, L.
    ACTA PHYSICA POLONICA B, 2020, 51 (01): : 175 - 180
  • [8] Nonparametric optimization of constrained total variation for tomography reconstruction
    Liu, Li
    Yin, Zhaofang
    Ma, Xueyun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (12) : 2163 - 2176
  • [9] A new reconstruction method in the Fourier domain for 3D positron emission tomography
    Mariano-Goulart, D
    Crouzet, JF
    COMPTES RENDUS PHYSIQUE, 2005, 6 (01) : 133 - 137
  • [10] Artificial Evolution for 3D PET Reconstruction
    Vidal, Franck P.
    Lazaro-Ponthus, Delphine
    Legoupil, Samuel
    Louchet, Jean
    Lutton, Evelyne
    Rocchisani, Jean-Marie
    ARTIFICIAL EVOLUTION, 2010, 5975 : 37 - +