Highly Stable and Stretchable Conductive Films through-Thermal-Radiation-Assisted Metal Encapsulation

被引:124
作者
Liu, Zhiyuan [1 ]
Wang, Hui [2 ,3 ]
Huang, Pingao [2 ,3 ]
Huang, Jianping [2 ]
Zhang, Yu [2 ]
Wang, Yuanyuan [2 ]
Yu, Mei [2 ]
Chen, Shixiong [2 ]
Qi, Dianpeng [1 ]
Wang, Ting [1 ]
Jiang, Ying [1 ]
Chen, Geng [1 ]
Hu, Guoyu [1 ]
Li, Wenlong [1 ]
Yu, Jiancan [1 ]
Luo, Yifei [1 ,4 ]
Loh, Xian Jun [4 ]
Liedberg, Bo [1 ]
Li, Guanglin [2 ]
Chen, Xiaodong [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Max Planck NTU Joint Lab Artificial Senses, Innovat Ctr Flexible Devices iFLEX, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, CAS Key Lab Human Machine Intelligence Synergy Sy, Shenzhen 518055, Peoples R China
[3] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
[4] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
adhesion; interlocking effect; polydimethylsiloxane; stability; stretchable conductors; THIN-FILM; FUTURE; SKIN; SOFT; TRANSPARENT; ELECTRONICS; FABRICATION; MECHANICS; SUBSTRATE; LIQUID;
D O I
10.1002/adma.201901360
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin-like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long-term use. Thermal-radiation-assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer-scale format through a one-step process. As a proof of concept, both long-term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.
引用
收藏
页数:9
相关论文
共 73 条
[21]   A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing [J].
Guo, Liang ;
Guvanasen, Gareth S. ;
Liu, Xi ;
Tuthill, Christopher ;
Nichols, T. Richard ;
DeWeerth, Stephen P. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2013, 7 (01) :1-10
[22]   Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes [J].
Jang, Ho Young ;
Lee, Seoung-Ki ;
Cho, Sang Hyun ;
Ahn, Jong-Hyun ;
Park, Sungho .
CHEMISTRY OF MATERIALS, 2013, 25 (17) :3535-3538
[23]   Liquid alloy printing of microfluidic stretchable electronics [J].
Jeong, Seung Hee ;
Hagman, Anton ;
Hjort, Klas ;
Jobs, Magnus ;
Sundqvist, Johan ;
Wu, Zhigang .
LAB ON A CHIP, 2012, 12 (22) :4657-4664
[24]   Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors [J].
Jiang, Ying ;
Liu, Zhiyuan ;
Matsuhisa, Naoji ;
Qi, Dianpeng ;
Leow, Wan Ru ;
Yang, Hui ;
Yu, Jiancan ;
Chen, Geng ;
Liu, Yaqing ;
Wan, Changjin ;
Liu, Zhuangjian ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2018, 30 (12)
[25]  
Kang W. H., 2012, STRETCHABLE ELECT
[26]   Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics [J].
Khang, Dahl-Young ;
Rogers, John A. ;
Lee, Hong H. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (10) :1526-1536
[27]   A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels [J].
Kim, Hyun-Joong ;
Son, Chulwoo ;
Ziaie, Babak .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[28]   Stretchable silicon nanoribbon electronics for skin prosthesis [J].
Kim, Jaemin ;
Lee, Mincheol ;
Shim, Hyung Joon ;
Ghaffari, Roozbeh ;
Cho, Hye Rim ;
Son, Donghee ;
Jung, Yei Hwan ;
Soh, Min ;
Choi, Changsoon ;
Jung, Sungmook ;
Chu, Kon ;
Jeon, Daejong ;
Lee, Soon-Tae ;
Kim, Ji Hoon ;
Choi, Seung Hong ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
NATURE COMMUNICATIONS, 2014, 5
[29]   Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene-Nanowire Hybrid Nanostructures [J].
Kim, Joohee ;
Lee, Mi-Sun ;
Jeon, Sangbin ;
Kim, Minji ;
Kim, Sungwon ;
Kim, Kukjoo ;
Bien, Franklin ;
Hong, Sung You ;
Park, Jang-Ung .
ADVANCED MATERIALS, 2015, 27 (21) :3292-3297
[30]   Mogul-Patterned Elastomeric Substrate for Stretchable Electronics [J].
Lee, Han-Byeol ;
Bae, Chan-Wool ;
Duy, Le Thai ;
Sohn, Il-Yung ;
Kim, Do-Il ;
Song, You-Joon ;
Kim, Youn-Jea ;
Lee, Nae-Eung .
ADVANCED MATERIALS, 2016, 28 (16) :3069-3077