Differentiably simple Jordan algebras

被引:5
|
作者
Popov, A. A. [1 ]
机构
[1] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Jordan algebra; derivation; differentiably simple algebra; SIMPLE RINGS; SUPERALGEBRAS; LIE;
D O I
10.1134/S0037446613040113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each exceptional differentiably simple Jordan algebra over a field of characteristic 0 is an Albert ring whose elements satisfy a cubic equation with the coefficients in the center of the algebra. If the characteristic of the field is greater than 2 then such an algebra is the tensor product of its center and a central exceptional simple 27-dimensional Jordan algebra. Some remarks made on special algebras.
引用
收藏
页码:713 / 721
页数:9
相关论文
共 50 条
  • [1] Differentiably simple Jordan algebras
    A. A. Popov
    Siberian Mathematical Journal, 2013, 54 : 713 - 721
  • [2] DIFFERENTIABLY SIMPLE ALTERNATIVE ALGEBRAS
    Popov, A. A.
    ALGEBRA AND LOGIC, 2010, 49 (05) : 456 - 469
  • [3] Differentiably simple alternative algebras
    A. A. Popov
    Algebra and Logic, 2010, 49 : 456 - 469
  • [4] Centroids of differentiably simple color algebras
    Zhang, Xuemei
    Zhou, Jianhua
    ALGEBRA COLLOQUIUM, 2006, 13 (03) : 447 - 454
  • [5] On the simple transposed Poisson algebras and Jordan superalgebras
    Ouaridi, Amir Fernandez
    JOURNAL OF ALGEBRA, 2024, 641 : 173 - 198
  • [6] Commuting involutions of Lie algebras, commuting varieties, and simple Jordan algebras
    Panyushev, Dmitri I.
    ALGEBRA & NUMBER THEORY, 2013, 7 (06) : 1505 - 1534
  • [7] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Ferreira, Bruno L. M.
    Fosner, Ajda
    Moraes, Gabriela C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) : 2779 - 2788
  • [8] Additivity of Jordan Derivations on Jordan Algebras with Idempotents
    Bruno L. M. Ferreira
    Ajda Fošner
    Gabriela C. Moraes
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2779 - 2788
  • [9] Jordan algebras admitting derivations with invertible values
    Kaygorodov, Ivan
    Lopatin, Artem
    Popov, Yury
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 69 - 81
  • [10] ON JORDAN ALGEBRAS THAT ARE FACTORS OF MATSUO ALGEBRAS
    Gorshkov, Ilya
    Mamontov, Andrey
    Staroletov, Alexey
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2025, 37 : 70 - 90