Computational haemodynamics of small vessels using the Moving Particle Semi-implicit (MPS) method

被引:34
|
作者
Gambaruto, Alberto M. [1 ]
机构
[1] Barcelona Supercomp Ctr, Dept Comp Applicat Sci & Engn CASE, Barcelona, Spain
关键词
Micro-circulation; Moving particle semi-implicit (MPS) method; Spring network; Red blood cells; RED-BLOOD-CELLS; ENDOTHELIAL SURFACE-LAYER; NUMERICAL-ANALYSIS; SHEAR-STRESS; FLOW; SIMULATION; MOTION; RHEOLOGY; BEHAVIOR; ROBUST;
D O I
10.1016/j.jcp.2015.08.039
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The simulation of whole blood stands as a complex multi-body problem. The Moving Particle Semi-implicit method, a Lagrangian particle method to solve the incompressible Navier-Stokes (NS) equations, is developed to perform simulations in complex periodic domains. Red blood cells are modelled using the spring network approach, that act as body force terms in the NS equations. Detailed presentation and derivation of both the MPS method and different spring network models is given. An adaptive time step and an implicit scheme are adopted, improving the stability and overall computational efficiency. The findings from the simulations show evidence that in proximity to the vessel wall, the red blood cells expose a larger surface area by orientation and deformation, due to the presence of a high velocity gradient. The greatest membrane internal stresses occur in the core region of the flow. The intra-cell interaction is driven by a complex flow field that can be visualised in a Lagrangian framework, and highlights vortex structures in the wakes and in between the cells. The stresses the blood exerts on the vessel wall are influenced by this complex flow field and by the presence of red blood cells. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 96
页数:29
相关论文
共 50 条
  • [21] Large deformation simulations of geomaterials using moving particle semi-implicit method
    Nohara, Shintaro
    Suenaga, Hiroshi
    Nakamura, Kunihiko
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2018, 10 (06) : 1122 - 1132
  • [22] Numerical analysis of breaking waves using the moving particle semi-implicit method
    Koshizuka, S
    Nobe, A
    Oka, Y
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1998, 26 (07) : 751 - 769
  • [23] Numerical Analysis of Droplet Impingement Using the Moving Particle Semi-implicit Method
    Xiong, Jinbiao
    Koshizuka, Seiichi
    Sakai, Mikio
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2010, 47 (03) : 314 - 321
  • [24] Enhancement of stability and accuracy of the moving particle semi-implicit method
    Khayyer, Abbas
    Gotoh, Hitoshi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 3093 - 3118
  • [25] DEVELOPMENT OF LEAST SQUARES MOVING PARTICLE SEMI-IMPLICIT METHOD
    Tamai, Tasuku
    Shibata, Kazuya
    Koshizuka, Seiichi
    PARTICLE-BASED METHODS III: FUNDAMENTALS AND APPLICATIONS, 2013, : 840 - 851
  • [26] Improved pressure calculation for the moving particle semi-implicit method
    Shibata, Kazuya
    Masaie, Issei
    Kondo, Masahiro
    Murotani, Kohei
    Koshizuka, Seiichi
    COMPUTATIONAL PARTICLE MECHANICS, 2015, 2 (01) : 91 - 108
  • [27] GPU-acceleration for Moving Particle Semi-Implicit method
    Hori, Chiemi
    Gotoh, Hitoshi
    Ikari, Hiroyuki
    Khayyer, Abbas
    COMPUTERS & FLUIDS, 2011, 51 (01) : 174 - 183
  • [28] Comparison of parallel solvers for Moving Particle Semi-Implicit method
    Duan, Guangtao
    Chen, Bin
    ENGINEERING COMPUTATIONS, 2015, 32 (03) : 834 - 862
  • [29] Improved pressure calculation for the moving particle semi-implicit method
    Kazuya Shibata
    Issei Masaie
    Masahiro Kondo
    Kohei Murotani
    Seiichi Koshizuka
    Computational Particle Mechanics, 2015, 2 : 91 - 108
  • [30] Erratum to: Least squares moving particle semi-implicit method
    Tasuku Tamai
    Seiichi Koshizuka
    Computational Particle Mechanics, 2014, 1 : 441 - 441