OBSTACLE PROBLEMS FOR DEGENERATE ELLIPTIC EQUATIONS WITH NONHOMOGENEOUS NONLINEAR BOUNDARY CONDITIONS

被引:7
作者
Andreu, Fuensanta [1 ]
Igbida, Noureddine [2 ]
Mazon, Jose M. [1 ]
Toledo, Julian [1 ]
机构
[1] Univ Valencia, E-46100 Burjassot, Spain
[2] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140, F-80038 Amiens, France
关键词
Obstacle problem; degenerate elliptic equation; p-Laplacian operator; nonlinear boundary conditions;
D O I
10.1142/S0218202508003224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the questions of existence and uniqueness of solutions for equations of type -div a(x, Du)+ gamma(u) phi, posed in an open bounded subset. of RN, with nonlinear boundary conditions of the form a(x, Du) . eta + beta(u) psi. The nonlinear elliptic operator div a( x, Du) modeled on the p-Laplacian operator Delta(p)(u) = div(vertical bar Du vertical bar(p- 2) Du), with p > 1, gamma and beta maximal monotone graphs in R(2) such that 0 epsilon gamma(0) boolean AND beta(0), R not equal <(D(gamma))over bar> subset of D(beta) and the data phi epsilon L(1)(Omega) and psi epsilon L(1)(partial derivative Omega). Since D(gamma) not equal R, we are dealing with obstacle problems. For this kind of problems the existence of weak solution, in the usual sense, fails to be true for nonhomogeneous boundary conditions, so a new concept of solution has to be introduced.
引用
收藏
页码:1869 / 1893
页数:25
相关论文
共 19 条
[1]  
ANDREIANOV B, UNIQUENESS EXI UNPUB
[2]   L1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions [J].
Andreu, F. ;
Igbida, N. ;
Mazon, J. M. ;
Toledo, J. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :61-89
[3]  
ANDREU F, 1997, ADV MATH SCI APPL, V7, P183
[4]  
[Anonymous], ANN SC NORM SUPE 4 S
[5]  
[Anonymous], 1973, OPERATEUR MAXIMAUX M
[6]  
Astarita G., 1974, Principles of Non-Newtonian Fluid Mechanics
[7]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems
[8]   SOME L1 EXISTENCE AND DEPENDENCE RESULTS FOR SEMILINEAR ELLIPTIC-EQUATIONS UNDER NONLINEAR BOUNDARY-CONDITIONS [J].
BENILAN, P ;
CRANDALL, MG ;
SACKS, P .
APPLIED MATHEMATICS AND OPTIMIZATION, 1988, 17 (03) :203-224
[9]   Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data [J].
Boccardo, L ;
Gallouet, T ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :539-551
[10]  
BREZIS H, 1972, J MATH PURE APPL, V51, P1