Global attractor for the Navier-Stokes equations with fractional deconvolution

被引:4
|
作者
Catania, Davide [1 ,2 ]
Morando, Alessandro [1 ]
Trebeschi, Paola [1 ]
机构
[1] Univ Brescia, Sez Matemat, DICATAM, I-25133 Brescia, Italy
[2] Univ eCampus, Fac Ingn, I-22060 Novedrate, CO, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2015年 / 22卷 / 04期
关键词
Navier-Stokes equations; Global attractor; Fractal and Hausdorff dimension; Approximate deconvolution models (ADM) and methods; Fractional filter; Large eddy simulation (LES); TURBULENCE; MODELS; EXISTENCE;
D O I
10.1007/s00030-014-0305-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a large eddy simulation model for the 3D Navier-Stokes equations obtained through fractional deconvolution of generic order. The global well-posedness of such a problem is already known. We prove the existence of the global attractor for the solution operator and find estimates for its Hausdorff and fractal dimensions both in terms of the Grashoff number and in terms of the mean dissipation length, with particular attention to the dependence on the fractional and deconvolution parameters. These results can be interpreted as bounds for the number of degrees of freedom of long-time dynamics, thus providing further information on the validity of the model for the simulation of turbulent 3D flows.
引用
收藏
页码:811 / 848
页数:38
相关论文
共 50 条
  • [31] Some global regular solutions to Navier-Stokes equations
    Zajaczkowski, W. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (02) : 123 - 151
  • [32] Global Solutions of a General Hyperbolic Navier-Stokes Equations
    Ji, Ruihong
    Li, Jingna
    Tian, Ling
    Wu, Jiahong
    FRONTIERS OF MATHEMATICS, 2025,
  • [33] Asymptotics and stability for global solutions to the Navier-Stokes equations
    Gallagher, I
    Iftimie, D
    Planchon, F
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (05) : 1387 - +
  • [34] On the stability of global solutions to Navier-Stokes equations in the space
    Auscher, P
    Dubois, S
    Tchamitchian, P
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (06): : 673 - 697
  • [35] On some properties of the Navier-Stokes equations
    Rubina, L., I
    Ul'yanov, O. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 245 - 256
  • [36] A study of the time fractional Navier-Stokes equations for vertical flow
    Moumen, Abdelkader
    Shafqat, Ramsha
    Niazi, Azmat Ullah Khan
    Pakkaranang, Nuttapol
    Jeelani, Mdi Begum
    Saleem, Kiran
    AIMS MATHEMATICS, 2023, 8 (04): : 8702 - 8730
  • [37] ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS
    Constantin, Peter
    Kukavica, Igor
    Vicol, Vlad
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 3075 - 3090
  • [38] On the Dynamics of Navier-Stokes and Euler Equations
    Yueheng Lan
    Y. Charles Li
    Journal of Statistical Physics, 2008, 132
  • [39] On the dynamics of Navier-Stokes and Euler equations
    Lan, Yueheng
    Li, Y. Charles
    JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (01) : 35 - 76
  • [40] Mild solutions to the time fractional Navier-Stokes equations in RN
    de Carvalho-Neto, Paulo Mendes
    Planas, Gabriela
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 2948 - 2980