Diffusion has no influence on the global asymptotical stability of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges

被引:5
|
作者
Yang, Wensheng [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Fujian, Peoples R China
关键词
Positive equilibrium; Diffusion; Prey refuge; Global asymptotical stability; MODIFIED LESLIE-GOWER; QUALITATIVE-ANALYSIS; FUNCTIONAL-RESPONSE; STATIONARY PATTERNS; SYSTEM;
D O I
10.1016/j.amc.2013.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a suitable Lyapunov function, we obtain the global asymptotical stability of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges and diffusion. It is shown that diffusion has no influence on the global asymptotical stability of the system with homogeneous Neumann boundary condition. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:278 / 280
页数:3
相关论文
共 50 条
  • [1] Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges
    Chen, Fengde
    Ma, Zhaozhi
    Zhang, Huiying
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (06) : 2790 - 2793
  • [2] Positive Solutions for a Lotka-Volterra Prey-Predator Model with Cross-Diffusion of Fractional Type
    Jun, Zhou
    Kim, Chan-Gyun
    RESULTS IN MATHEMATICS, 2014, 65 (3-4) : 293 - 320
  • [3] Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics
    Chen, Liujuan
    Chen, Fengde
    Wang, Yiqin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 3174 - 3180
  • [4] Dynamic behaviors of Lotka-Volterra predator-prey model incorporating predator cannibalism
    Deng, Hang
    Chen, Fengde
    Zhu, Zhenliang
    Li, Zhong
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [5] Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference
    Ma, Zhaozhi
    Chen, Fengde
    Wu, Chengqiang
    Chen, Wanlin
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 7945 - 7953
  • [6] Stability analysis of a fractional-order diffused prey-predator model with prey refuges
    Xie, Yingkang
    Lu, Junwei
    Wang, Zhen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [7] Local stability analysis on Lotka-Volterra predator-prey models with prey refuge and harvesting
    Chow, Christopher
    Hoti, Marvin
    Li, Chongming
    Lan, Kunquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7711 - 7732
  • [8] Global Asymptotical Stability of a Prey-predator System with Diffusion and Time Delays
    Meng Yijie
    Xiao Shiwu
    Ding Ling
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON PRODUCT INNOVATION MANAGEMENT, VOLS I AND II, 2010, : 1330 - 1335
  • [9] On a Multi-Delay Lotka-Volterra Predator-Prey Model with Feedback Controls and Prey Diffusion
    Changyou Wang
    Nan Li
    Yuqian Zhou
    Xingcheng Pu
    Rui Li
    Acta Mathematica Scientia, 2019, 39 : 429 - 448
  • [10] ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION
    王长有
    李楠
    周钰谦
    蒲兴成
    李锐
    Acta Mathematica Scientia, 2019, 39 (02) : 429 - 448