Hydrodynamic Supercontinuum

被引:54
作者
Chabchoub, A. [1 ,2 ]
Hoffmann, N. [2 ,3 ]
Onorato, M. [4 ,5 ]
Genty, G. [6 ]
Dudley, J. M. [7 ]
Akhmediev, N. [8 ]
机构
[1] Swinburne Univ Technol, Ctr Ocean Engn Sci & Technol, Hawthorn, Vic 3122, Australia
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[3] Hamburg Univ Technol, Dynam Grp, D-21073 Hamburg, Germany
[4] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] Tampere Univ Technol, Opt Lab, FIN-33101 Tampere, Finland
[7] Univ Franche Comte, Inst FEMTO ST, UMR 6174, CNRS, F-25030 Besancon, France
[8] Australian Natl Univ, Opt Sci Grp, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 芬兰科学院;
关键词
SOLITONS; WAVES; GENERATION; DYNAMICS; GRAVITY; FIBER;
D O I
10.1103/PhysRevLett.111.054104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the experimental observation of multi-bound-soliton solutions of the nonlinear Schrodinger equation (NLS) in the context of hydrodynamic surface gravity waves. Higher-order N-soliton solutions with N = 2, 3 are studied in detail and shown to be associated with self-focusing in the wave group dynamics and the generation of a steep localized carrier wave underneath the group envelope. We also show that for larger input soliton numbers, the wave group experiences irreversible spectral broadening, which we refer to as a hydrodynamic supercontinuum by analogy with optics. This process is shown to be associated with the fission of the initial multisoliton into individual fundamental solitons due to higher-order nonlinear perturbations to the NLS. Numerical simulations using an extended NLS model described by the modified nonlinear Schrodinger equation, show excellent agreement with experiment and highlight the universal role that higher-order nonlinear perturbations to the NLS play in supercontinuum generation.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] SPATIAL SOLITON X-JUNCTIONS AND COUPLERS
    AKHMEDIEV, N
    ANKIEWICZ, A
    [J]. OPTICS COMMUNICATIONS, 1993, 100 (1-4) : 186 - 192
  • [2] Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
  • [3] AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
  • [4] [Anonymous], 2010, OPTICAL FIBER SUPERC
  • [5] [Anonymous], 1984, THEORY SOLITONS INVE
  • [6] Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions
    Bailung, H.
    Sharma, S. K.
    Nakamura, Y.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (25)
  • [7] Belashov V.Y., 2005, SPRINGER SERIES SOLI, V149
  • [8] Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves
    Chabchoub, A.
    Hoffmann, N.
    Onorato, M.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW X, 2012, 2 (01):
  • [9] Rogue Wave Observation in a Water Wave Tank
    Chabchoub, A.
    Hoffmann, N. P.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [10] Long time interaction of envelope solitons and freak wave formations
    Clamond, Didier
    Francius, Marc
    Grue, John
    Kharif, Christian
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2006, 25 (05) : 536 - 553