On the Generalized Cluster Algebras of Geometric Type

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ]
Xu, Fan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 West Main St, Whitewater, WI 53190 USA
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
cluster algebra; generalized cluster algebra; lower bound; upper bound; standard monomial;
D O I
10.3842/SIGMA.2020.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop and prove the analogs of some results shown in [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1{52] concerning lower and upper bounds of cluster algebras to the generalized cluster algebras of geometric type. We show that lower bounds coincide with upper bounds under the conditions of acyclicity and coprimality. Consequently, we obtain the standard monomial bases of these generalized cluster algebras. Moreover, in the appendix, we prove that an acyclic generalized cluster algebra is equal to the corresponding generalized upper cluster algebra without the assumption of the existence of coprimality.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Cluster algebras I: Foundations
    Fomin, S
    Zelevinsky, A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) : 497 - 529
  • [42] Cluster algebras and triangulated orbifolds
    Felikson, Anna
    Shapiro, Michael
    Tumarkin, Pavel
    ADVANCES IN MATHEMATICS, 2012, 231 (05) : 2953 - 3002
  • [43] Cluster algebras IV: Coefficients
    Fomin, Sergey
    Zelevinsky, Andrei
    COMPOSITIO MATHEMATICA, 2007, 143 (01) : 112 - 164
  • [44] Cluster Algebras and Representation Theory
    Leclerc, Bernard
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2471 - 2488
  • [45] Virtual braids and cluster algebras
    Egorov, Andrey A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2024, (91):
  • [46] Knot theory and cluster algebras
    Bazier-Matte, Veronique
    Schiffler, Ralf
    ADVANCES IN MATHEMATICS, 2022, 408
  • [47] Tensor diagrams and cluster algebras
    Fomin, Sergey
    Pylyayskyy, Pavlo
    ADVANCES IN MATHEMATICS, 2016, 300 : 717 - 787
  • [48] Cluster modular groups of affine and doubly extended cluster algebras
    Kaufman, Dani
    Greenberg, Zachary
    MATHEMATISCHE ZEITSCHRIFT, 2025, 310 (02)
  • [49] A Combinatorial Characterization of Cluster Algebras: On the Number of Arrows of Cluster Quivers
    Qiuning Du
    Fang Li
    Jie Pan
    Annals of Combinatorics, 2022, 26 : 1077 - 1120
  • [50] A Combinatorial Characterization of Cluster Algebras: On the Number of Arrows of Cluster Quivers
    Du, Qiuning
    Li, Fang
    Pan, Jie
    ANNALS OF COMBINATORICS, 2022, 26 (04) : 1077 - 1120