On the Generalized Cluster Algebras of Geometric Type

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ]
Xu, Fan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 West Main St, Whitewater, WI 53190 USA
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
cluster algebra; generalized cluster algebra; lower bound; upper bound; standard monomial;
D O I
10.3842/SIGMA.2020.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop and prove the analogs of some results shown in [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1{52] concerning lower and upper bounds of cluster algebras to the generalized cluster algebras of geometric type. We show that lower bounds coincide with upper bounds under the conditions of acyclicity and coprimality. Consequently, we obtain the standard monomial bases of these generalized cluster algebras. Moreover, in the appendix, we prove that an acyclic generalized cluster algebra is equal to the corresponding generalized upper cluster algebra without the assumption of the existence of coprimality.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Combinatorics of X-variables in finite type cluster algebras
    Sherman-Bennett, Melissa
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 165 : 273 - 298
  • [22] A Geometric Realization of the m-cluster Category of Affine Type A
    Torkildsen, Hermund Andre
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2541 - 2567
  • [23] A CONJECTURE ON CLUSTER AUTOMORPHISMS OF CLUSTER ALGEBRAS
    Cao, Peigen
    Li, Fang
    Liu, Siyang
    Pan, Jie
    ELECTRONIC RESEARCH ARCHIVE, 2019, 27 : 1 - 6
  • [24] Quantum cluster algebras
    Berenstein, A
    Zelevinsky, A
    ADVANCES IN MATHEMATICS, 2005, 195 (02) : 405 - 455
  • [25] Graded cluster algebras
    Grabowski, Jan E.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) : 1111 - 1134
  • [26] Graded cluster algebras
    Jan E. Grabowski
    Journal of Algebraic Combinatorics, 2015, 42 : 1111 - 1134
  • [27] On periodicities in cluster algebras
    Li, Fang
    Liu, Siyang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 1054 - 1065
  • [28] Cluster algebras as Hall algebras of quiver representations
    Caldero, Philippe
    Chapoton, Frederic
    COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (03) : 595 - 616
  • [29] Periodicities in Cluster Algebras and Cluster Automorphism Groups
    Liu, Siyang
    Li, Fang
    ALGEBRA COLLOQUIUM, 2021, 28 (04) : 601 - 624
  • [30] Cluster algebras generated by projective cluster variables
    Baur, Karin
    Nasr-Isfahani, Alireza
    JOURNAL OF ALGEBRA, 2023, 627 : 1 - 42