LIPSCHITZ EQUIVALENCE OF GENERAL SIERPINSKI CARPETS

被引:12
作者
Dai, Meifeng [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Peoples R China
基金
美国国家科学基金会;
关键词
Lipschitz Equivalence; Sierpinski Carpet; Graph-Directed Set; Self-Similar Set; Invariant Set;
D O I
10.1142/S0218348X08004022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, a lot of work has been devoted to the study of the Lipschitz equivalence between self-similar sets. Many related results on self-similar sets of the real line have been well-known under the condition that the similarity ratios equal each other. In this paper, we generalize some results to a more general setting. We mainly study the Lipschitz equivalence between two general Sierpinski carpets in R(2).
引用
收藏
页码:379 / 388
页数:10
相关论文
共 8 条
[1]  
DAI M, 2006, INT J NONLIN SCI, V2, P77
[2]  
Falconer K., 2004, FRACTAL GEOMETRY MAT
[3]   ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS [J].
FALCONER, KJ ;
MARSH, DT .
MATHEMATIKA, 1992, 39 (78) :223-233
[4]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[5]   HAUSDORFF DIMENSION IN GRAPH DIRECTED CONSTRUCTIONS [J].
MAULDIN, RD ;
WILLIAMS, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :811-829
[6]   Lipschitz equivalence of self-similar sets [J].
Rao, H ;
Ruan, HJ ;
Xi, LF .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) :191-196
[7]   Relations among Whitney sets, self-similar arcs and quasi-arcs [J].
Wen, ZY ;
Xi, LF .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 136 (1) :251-267
[8]   Lipschitz equivalence of self-conformal sets [J].
Xi, LF .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 :369-382