Classical percolation fingerprints in the high temperature regime of the quantum Hall effect

被引:6
|
作者
Floeser, M. [1 ]
Piot, B. A. [2 ]
Campbell, C. L. [2 ]
Maude, D. K.
Henini, M. [3 ]
Airey, R. [4 ]
Wasilewski, Z. R. [5 ]
Florens, S. [1 ]
Champel, T. [1 ,6 ]
机构
[1] Univ Grenoble 1, F-38042 Grenoble, France
[2] UJF UPS INSA, CNRS, Lab Natl Champs Magnet Intenses, F-38042 Grenoble, France
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 4DU, S Yorkshire, England
[5] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[6] CNRS, Lab Phys & Modelisat Milieux Condenses, F-38042 Grenoble, France
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
2-DIMENSIONAL ELECTRON-GAS; STRONG MAGNETIC-FIELD; ACTIVATED CONDUCTIVITY; PHONON SCATTERING; RESISTANCE; MAGNETOTRANSPORT; LOCALIZATION; TRANSITIONS; CONDUCTORS; TRANSPORT;
D O I
10.1088/1367-2630/15/8/083027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have performed magnetotransport experiments in the high-temperature regime (up to 50 K) of the integer quantum Hall effect for two-dimensional electron gases in semiconducting heterostructures. While the magnetic field dependence of the classical Hall law presents no anomaly at high temperatures, we find a breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a crossover magnetic field B-c similar or equal to 1 T, which turns out to be correlated with the onset of the integer quantum Hall effect at low temperatures. We show that the high magnetic field regime at B > B-c can be understood in terms of classical percolative transport in a smooth disordered potential. From the temperature dependence of the peak longitudinal conductance, we extract scaling exponents which are in good agreement with the theoretically expected values. We also prove that inelastic scattering on phonons is responsible for dissipation in a wide temperature range going from 1 to 50 K at high magnetic fields.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice
    Endo, Akira
    Iye, Yasuhiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (03)
  • [42] Origin of the hysteresis in bilayer two-dimensional systems in the quantum Hall regime
    Ho, L. H.
    Taskinen, L. J.
    Micolich, A. P.
    Hamilton, A. R.
    Atkinson, P.
    Ritchie, D. A.
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [43] Anisotropic electronic states in the fractional quantum Hall regime
    Ciftja, Orion
    AIP ADVANCES, 2017, 7 (05):
  • [44] Non-equilibrium transport in a quantum wire in the quantum Hall regime
    Chida, K.
    Hashisaka, M.
    Yamauchi, Y.
    Nakamura, S.
    Arakawa, T.
    Machida, T.
    Kobayashi, K.
    Ono, T.
    HORIBA INTERNATIONAL CONFERENCE: THE 19TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS AND NANOTECHNOLOGY, 2011, 334
  • [45] Observation of neutral modes in the fractional quantum Hall regime
    Bid, Aveek
    Ofek, N.
    Inoue, H.
    Heiblum, M.
    Kane, C. L.
    Umansky, V.
    Mahalu, D.
    NATURE, 2010, 466 (7306) : 585 - 590
  • [46] Inhomogeneous transport and derivative relations in the quantum Hall regime
    Simon, SH
    PHYSICA B-CONDENSED MATTER, 1998, 256 : 23 - 27
  • [47] Nonlocal superconducting correlations in graphene in the quantum Hall regime
    Beconcini, Michael
    Polini, Marco
    Taddei, Fabio
    PHYSICAL REVIEW B, 2018, 97 (20)
  • [48] Quantum Hall effect in quantum electrodynamics
    Penin, Alexander A.
    PHYSICAL REVIEW B, 2009, 79 (11):
  • [49] Searching for the Fractional Quantum Hall Effect in Graphite
    Kopelevich, Y.
    Raquet, B.
    Goiran, M.
    Escoffier, W.
    da Silva, R. R.
    Medina Pantoja, J. C.
    Luk'yanchuk, I. A.
    Sinchenko, A.
    Monceau, P.
    PHYSICAL REVIEW LETTERS, 2009, 103 (11)
  • [50] Hysteretic Phenomena in a 2DEG in the Quantum Hall Effect Regime, Studied in a Transport Experiment
    Budantsev, M. V.
    Pokhabov, D. A.
    Pogosov, A. G.
    Zhdanov, E. Yu
    Bakarov, A. K.
    Toropov, A. I.
    SEMICONDUCTORS, 2014, 48 (11) : 1423 - 1431