A Structure-Based Mechanism for DNA Entry into the Cohesin Ring

被引:91
|
作者
Higashi, Torahiko L. [1 ]
Eickhoff, Patrik [2 ]
Sousa, Joana S. [2 ]
Locke, Julia [2 ]
Nans, Andrea [3 ]
Flynn, Helen R. [4 ]
Snijders, Ambrosius P. [4 ]
Papageorgiou, George [5 ]
O'Reilly, Nicola [5 ]
Chen, Zhuo A. [6 ]
O'Reilly, Francis J. [6 ]
Rappsilber, Juri [6 ,7 ]
Costa, Alessandro [2 ]
Uhlmann, Frank [1 ]
机构
[1] Francis Crick Inst, Chromosome Segregat Lab, London NW1 1AT, England
[2] Francis Crick Inst, Macromol Machines Lab, London NW1 1AT, England
[3] Francis Crick Inst, Struct Biol STP, London NW1 1AT, England
[4] Francis Crick Inst, Prote STP, London NW1 1AT, England
[5] Francis Crick Inst, Peptide Chem STP, London NW1 1AT, England
[6] Tech Univ Berlin, Inst Biotechnol, Bioanalyt Unit, D-13355 Berlin, Germany
[7] Univ Edinburgh, Wellcome Ctr Cell Biol, Edinburgh EH9 3BF, Midlothian, Scotland
基金
欧洲研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
CRYSTAL-STRUCTURE; ATP HYDROLYSIS; CRYO-EM; CONDENSIN; BINDING; VISUALIZATION; CHROMOSOMES; REQUIRES; COMPLEX; GATE;
D O I
10.1016/j.molcel.2020.07.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
引用
收藏
页码:917 / +
页数:26
相关论文
共 50 条
  • [21] Structure-based membrane dome mechanism for Piezo mechanosensitivity
    Guo, Yusong R.
    MacKinnon, Roderick
    ELIFE, 2017, 6
  • [22] A structure-based mechanism for drug binding by multidrug transporters
    Zheleznova, EE
    Markham, P
    Edgar, R
    Bibi, E
    Neyfakh, AA
    Brennan, RG
    TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (02) : 39 - 43
  • [23] Structure-based analysis of HU-DNA binding
    Swinger, Kerren K.
    Rice, Phoebe A.
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 365 (04) : 1005 - 1016
  • [24] Structure-based Mechanism of ADP-ribosylation by Sirtuins
    Hawse, William F.
    Wolberger, Cynthia
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (48) : 33654 - 33661
  • [25] Structure-based elucidation of the regulatory mechanism for aminopeptidase activity
    Ta, Hai Minh
    Bae, Sangsu
    Han, Seungsu
    Song, Jihyuck
    Ahn, Tae Kyu
    Hohng, Sungchul
    Lee, Sangho
    Kim, Kyeong Kyu
    ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2013, 69 : 1738 - 1747
  • [26] Insights into a structure-based mechanism of viral membrane fusion
    LeDuc, DL
    Shin, YK
    BIOSCIENCE REPORTS, 2000, 20 (06) : 557 - 570
  • [27] Cubic membranes: a structure-based design for DNA uptake
    Almsherqi, Zakaria
    Hyde, Stephen
    Ramachandran, Malarmathy
    Deng, Yuru
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (26) : 1023 - 1029
  • [28] Structure-Based Design of a Photocontrolled DNA Binding Protein
    Morgan, Stacy-Anne
    Al-Abdul-Wahid, Sameer
    Woolley, G. Andrew
    JOURNAL OF MOLECULAR BIOLOGY, 2010, 399 (01) : 94 - 112
  • [29] Cohesin Complex: Structure and Principles of Interaction with DNA
    Golov, Arkadiy K.
    Gavrilov, Alexey A.
    BIOCHEMISTRY-MOSCOW, 2024, 89 (04) : 585 - 600
  • [30] Mechanostability of cohesin-dockerin complexes in a structure-based model: Anisotropy and lack of universality in the force profiles
    Wojciechowski, Michal
    Thompson, Damien
    Cieplak, Marek
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (24): : 245103