Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles

被引:79
|
作者
Loeschner, Katrin [1 ]
Navratilova, Jana [1 ]
Legros, Samuel [2 ]
Wagner, Stephan [2 ]
Grombe, Ringo [3 ]
Snell, James [3 ]
von der Kammer, Frank [2 ]
Larsen, Erik H. [1 ]
机构
[1] Tech Univ Denmark, Natl Food Inst, Div Food Chem, DK-2860 Soborg, Denmark
[2] Univ Vienna, Dept Environm Geosci, A-1090 Vienna, Austria
[3] IRMM, Reference Mat Unit, B-2440 Geel, Belgium
关键词
Nanoparticles; Silver; Field flow fractionation; SEPARATION; RETENTION; PRODUCTS; FOOD;
D O I
10.1016/j.chroma.2012.11.053
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanopartides (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 mu g. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 50 条
  • [21] Operational-modes of field-flow fractionation in microfluidic channels
    Shendruk, T. N.
    Slater, G. W.
    JOURNAL OF CHROMATOGRAPHY A, 2012, 1233 : 100 - 108
  • [22] Asymmetrical Flow Field-Flow Fractionation for Sizing of Gold Nanoparticles in Suspension
    Drexel, Roland
    Sogne, Vanessa
    Dinkel, Magdalena
    Meier, Florian
    Klein, Thorsten
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (163): : 1 - 23
  • [23] Performance evaluation of flow field-flow fractionation and electrothermal atomic absorption spectrometry for size characterization of gold nanoparticles
    Mekprayoon, Sutthinee
    Siripinyanond, Atitaya
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1604
  • [24] Quantification of Nanoparticles via Flow Injection Analysis Using Asymmetric Flow Field-flow Fractionation (AF4)
    Itabashi, Daisuke
    Mizukami, Kazumi
    ISIJ INTERNATIONAL, 2022, 62 (05) : 860 - 866
  • [25] Impact of asymmetrical flow field-flow fractionation on protein aggregates stability
    Bria, Carmen R. M.
    Williams, S. Kim Ratanathanawongs
    JOURNAL OF CHROMATOGRAPHY A, 2016, 1465 : 155 - 164
  • [26] Recovery, overloading, and protein interactions in asymmetrical flow field-flow fractionation
    Marioli, Maria
    Kok, Wim Th
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2019, 411 (11) : 2327 - 2338
  • [27] Nanofiltration membranes in asymmetric flow field-flow fractionation for improved organic matter size fractionation
    Gopalakrishnan, Akhil
    Treasa, Susan
    Boussouga, Youssef-Amine
    Schaefer, Andrea I.
    JOURNAL OF MEMBRANE SCIENCE, 2025, 713
  • [28] Application of Asymmetric Flow Field-Flow Fractionation hyphenations for liposome-antimicrobial peptide interaction
    Iavicoli, Patrizia
    Urban, Patricia
    Bella, Angelo
    Ryadnov, Maxim G.
    Rossi, Francois
    Calzolai, Luigi
    JOURNAL OF CHROMATOGRAPHY A, 2015, 1422 : 260 - 269
  • [29] The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix
    Heroult, Julien
    Nischwitz, Volker
    Bartczak, Dorota
    Goenaga-Infante, Heidi
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (16) : 3919 - 3927
  • [30] Characterization of oat proteins and aggregates using asymmetric flow field-flow fractionation
    Runyon, J. Ray
    Nilsson, Lars
    Alftren, Johan
    Bergenstahl, Bjorn
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2013, 405 (21) : 6649 - 6655