New Integrable and Linearizable Nonlinear Difference Equations

被引:2
|
作者
Sahadevan, R. [1 ]
Nagavigneshwari, G. [1 ]
机构
[1] Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
关键词
MAPPINGS;
D O I
10.1080/14029251.2013.805563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic investigation to derive nonlinear lattice equations governed by partial difference equations (P Delta Delta E) admitting specific Lax representation is presented. Further it is shown that for a specific value of the parameter the derived nonlinear P Delta Delta E's can be transformed into a linear P Delta Delta E's under a global transformation. Also it is demonstrated how to derive higher order ordinary difference equations (O Delta E) or mappings in general and linearizable ones in particular from the obtained nonlinear P Delta Delta E's through periodic reduction. The question of measure preserving property of the obtained O Delta E's and the construction of more than one integrals (or invariants) of them is examined wherever possible.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [1] New Integrable and Linearizable Nonlinear Difference Equations
    R. Sahadevan
    G. Nagavigneshwari
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 179 - 190
  • [2] The unified transform for linear, linearizable and integrable nonlinear partial differential equations
    Fokas, A. S.
    De Lillo, S.
    PHYSICA SCRIPTA, 2014, 89 (03)
  • [3] New hierarchy of integrable nonlinear differential-difference equations
    Geng, Xianguo
    Guan, Liang
    Xue, Bo
    MODERN PHYSICS LETTERS B, 2015, 29 (31):
  • [4] New Integrable Multicomponent Nonlinear Partial Differential-Difference Equations
    R. Sahadevan
    S. Balakrishnan
    Journal of Nonlinear Mathematical Physics, 2011, 18 : 501 - 518
  • [5] NEW INTEGRABLE MULTICOMPONENT NONLINEAR PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS
    Sahadevan, R.
    Balakrishnan, S.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2011, 18 (04) : 501 - 518
  • [6] Lax integrable nonlinear partial difference equations
    Sahadevan, R.
    Nagavigneshwari, G.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 674 - 683
  • [7] Integrable hierarchies of nonlinear difference-difference equations and symmetries
    Levi, D
    Martina, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10357 - 10368
  • [8] A hierarchy of nonlinear differential-difference equations and a new Bargmann type integrable system
    Sun, Ye-Peng
    Chen, Deng-Yuan
    Xu, Xi-Xiang
    PHYSICS LETTERS A, 2006, 359 (01) : 47 - 51
  • [9] LIOUVILLE SURFACE AND NEW NONLINEAR INTEGRABLE EQUATIONS
    CHOWDHURY, AR
    PAUL, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (03): : L97 - L100
  • [10] New integrable equations of nonlinear Schrodinger type
    Calogero, F
    Degasperis, A
    STUDIES IN APPLIED MATHEMATICS, 2004, 113 (01) : 91 - 137