Mid-infrared reflectance spectroscopy of aubrite components

被引:5
作者
Morlok, Andreas [1 ]
Weber, Iris [1 ]
Stojic, Aleksandra N. [1 ]
Sohn, Martin [2 ]
Bischoff, Addi [1 ]
Martin, Dayl [3 ]
Hiesinger, Harald [1 ]
Helbert, Joern [4 ]
机构
[1] Westfalische Wilhelms Univ, Inst Planetol, Wilhelm Klemm Str 10, D-48149 Munster, Germany
[2] Hsch Emden Leer, Constantiapl 4, D-26723 Emden, Germany
[3] European Space Agcy, Fermi Ave,Harwell Campus, Didcot OX11 0FD, Oxon, England
[4] DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
关键词
MERCURYS SURFACE; SPECTRA; EMISSIVITY; ANALOGS; METEORITES; MINERALOGY; EVOLUTION; PYROXENES; MESSENGER; ELEMENTS;
D O I
10.1111/maps.13568
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Aubrites Pena Blanca Spring and Norton County were studied in the mid-infrared reflectance as part of a database for the MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) instrument on the ESA/JAXA BepiColombo mission to Mercury. Spectra of bulk powder size fractions from Pena Blanca Spring show enstatite Reststrahlen bands (RB) at 9 mu m, 9.3 mu m, 9.9 mu m, 10.4 mu m, and 11.6 mu m. The transparency feature (TF) is at 12.7 mu m, the Christiansen feature (CF) at 8.1-8.4 mu m. Micro-FTIR of spots with enstatite composition in Norton County and Pena Blanca Spring shows four types: Types I and II are similar to the bulk powder spectra but vary in band shape and probably display axis orientation. Type III has characteristic strong RB at 9.2 mu m, 10.4 mu m, and 10.5 mu m, and at 11.3 mu m. Type IV is characterized by a strong RB at 10.8-11.1 mu m. Types III and IV could show signs of incipient shock metamorphism. Bulk results of this study confirm earlier spectral studies of aubrites that indicate a high degree of homogeneity and probably make the results of this study representative for spectral studies of an aubrite parent body. Spectral types I and II occur in all mineralogical settings (mineral clasts, matrix, melt, fragments in melt vein), while spectral type III was only observed among the clasts, and type IV in the melt. Comparison with surface spectra of Mercury does not obtain a suitable fit, only type IV spectra from quenched impact glass show similarity, in particular the 11 mu m feature. Results of this study will be available upon request or via the IRIS database (Munster) and the Berlin Emissivity Database (BED).
引用
收藏
页码:2080 / 2096
页数:17
相关论文
共 50 条
  • [1] Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals
    Lane, Melissa D.
    Bishop, Janice L.
    Dyar, M. Darby
    Hiroi, Takahiro
    Mertzman, Stanley A.
    Bish, David L.
    King, Penelope L.
    Rogers, A. Deanne
    AMERICAN MINERALOGIST, 2015, 100 (01) : 66 - 82
  • [2] Mid-infrared reflectance spectroscopy of carbonaceous chondrites and Calcium-Aluminum-rich inclusions
    Morlok, Andreas
    Schiller, Benjamin
    Weber, Iris
    Daswani, Mohit Melwani
    Stojic, Aleksandra N.
    Reitze, Maximilian P.
    Gramse, Tim
    Wolters, Stephen D.
    Hiesinger, Harald
    Grady, Monica M.
    Helbert, Joern
    PLANETARY AND SPACE SCIENCE, 2020, 193
  • [3] Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing
    Morlok, Andreas
    Klemme, Stephan
    Weber, Iris
    Stojic, Aleksandra
    Sohn, Martin
    Hiesinger, Harald
    Helbert, Joern
    ICARUS, 2019, 324 : 86 - 103
  • [4] Searching water megamasers by using mid-infrared spectroscopy (I): Possible mid-infrared indicators
    Lam, Man, I
    Walcher, C. Jakob
    Gao, Feng
    Yang, Ming
    Li, Huan
    Hao, Lei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 506 (04) : 5548 - 5558
  • [5] A combination of near infrared and mid-infrared spectroscopy to improve the determination efficiency of active components in Radix Astragali
    Liu, Xuesong
    Zhang, Siyu
    Si, Leting
    Lin, Zhonglin
    Wu, Chunyan
    Luan, Lianjun
    Wu, Yongjiang
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2020, 28 (01) : 10 - 17
  • [6] Mid-infrared spectroscopy of alkali feldspar samples for space application
    Reitze, Maximilian P.
    Weber, Iris
    Kroll, Herbert
    Morlok, Andreas
    Hiesinger, Harald
    Helbert, Joern
    MINERALOGY AND PETROLOGY, 2020, 114 (05) : 453 - 463
  • [7] Using mid-infrared diffuse reflectance spectroscopy to investigate the dynamics of soil aggregate formation in a clay soil
    Zhu, Zhaolong
    Minasny, Budiman
    Field, Damien J.
    An, Shaoshan
    CATENA, 2023, 231
  • [8] Mid-infrared spectroscopy of components in chondrites: Search for processed materials in young Solar Systems and comets
    Morlok, A.
    Lisse, C. M.
    Mason, A. B.
    Bullock, E. S.
    Grady, M. M.
    ICARUS, 2014, 231 : 338 - 355
  • [9] Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals
    Lane, Melissa D.
    AMERICAN MINERALOGIST, 2007, 92 (01) : 1 - 18
  • [10] Predicting hydrolysis of whey protein by mid-infrared spectroscopy
    Poulsen, Nina A.
    Eskildsen, Carl E.
    Akkerman, Marije
    Johansen, Lene B.
    Hansen, Mikka S.
    Hansen, Per W.
    Skov, Thomas
    Larsen, Lotte B.
    INTERNATIONAL DAIRY JOURNAL, 2016, 61 : 44 - 50