Brief Announcement: Byzantine-Tolerant Machine Learning

被引:2
|
作者
Blanchard, Peva [1 ]
El Mhamdi, El Mahdi [1 ]
Guerraoui, Rachid [1 ]
Stainer, Julien [1 ]
机构
[1] Swiss Fed Inst Technol, Lausanne, Switzerland
来源
PROCEEDINGS OF THE ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'17) | 2017年
基金
瑞士国家科学基金会;
关键词
Distributed Stochastic Gradient Descent; Adversarial Machine Learning;
D O I
10.1145/3087801.3087861
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We report on Krum, the first provably Byzantine-tolerant aggregation rule for distributed Stochastic Gradient Descent (SGD). Krum guarantees the convergence of SGD even in a distributed setting where (asymptotically) up to half of the workers can be malicious adversaries trying to attack the learning system.
引用
收藏
页码:455 / 457
页数:3
相关论文
共 50 条
  • [1] Adversarial Machine Learning
    Tygar, J. D.
    IEEE INTERNET COMPUTING, 2011, 15 (05) : 4 - 6
  • [2] Can machine learning model with static features be fooled: an adversarial machine learning approach
    Rahim Taheri
    Reza Javidan
    Mohammad Shojafar
    P. Vinod
    Mauro Conti
    Cluster Computing, 2020, 23 : 3233 - 3253
  • [3] Can machine learning model with static features be fooled: an adversarial machine learning approach
    Taheri, Rahim
    Javidan, Reza
    Shojafar, Mohammad
    Vinod, P.
    Conti, Mauro
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (04): : 3233 - 3253
  • [4] Machine Learning in Adversarial Settings
    McDaniel, Patrick
    Papernot, Nicolas
    Celik, Z. Berkay
    IEEE SECURITY & PRIVACY, 2016, 14 (03) : 68 - 72
  • [5] HoneyModels: Machine Learning Honeypots
    Abdou, Ahmed
    Sheatsley, Ryan
    Beugin, Yohan
    Shipp, Tyler
    McDaniel, Patrick
    2021 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2021), 2021,
  • [6] On the Economics of Adversarial Machine Learning
    Merkle, Florian
    Samsinger, Maximilian
    Schottle, Pascal
    Pevny, Tomas
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 4670 - 4685
  • [7] How to Steal a Machine Learning Classifier with Deep Learning
    Shi, Yi
    Sagduyu, Yalin
    Grushin, Alexander
    2017 IEEE INTERNATIONAL SYMPOSIUM ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), 2017,
  • [8] Adversarial Machine Learning - Industry Perspectives
    Kumar, Ram Shankar Siva
    Nystrom, Magnus
    Lambert, John
    Marshall, Andrew
    Goertzel, Mario
    Comissoneru, Andi
    Swann, Matt
    Xia, Sharon
    2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2020), 2020, : 69 - 75
  • [9] Poisoning Attacks on Fair Machine Learning
    Minh-Hao Van
    Du, Wei
    Wu, Xintao
    Lu, Aidong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT I, 2022, : 370 - 386
  • [10] Machine Learning Security and Privacy INTRODUCTION
    Baracaldo, Nathalie
    Oprea, Alina
    IEEE SECURITY & PRIVACY, 2022, 20 (05) : 11 - 13