Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer

被引:5
|
作者
Yang Juan-Cheng [1 ,2 ]
Li Feng-Chen [1 ]
Cai Wei-Hua [1 ]
Zhang Hong-Na [1 ]
Yu Bo [3 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] China Univ Petr, Beijing Key Lab Urban Oil & Gas Distribut Technol, Beijing 102249, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
viscoelastic-fluid-based nanofluid; direct numerical simulation; thermal dispersion model; turbulent drag reduction; heat transfer enhancement; THERMAL-CONDUCTIVITY ENHANCEMENT; PIPE-FLOW; DRAG; DNS; CONVECTION; MECHANISM;
D O I
10.1088/1674-1056/24/8/084401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid (VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid (VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation (DNS) is performed in this study to explore the mechanisms of heat transfer enhancement (HTE) and flow drag reduction (DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton-Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Direct Numerical Simulation of a Turbulent Channel Flow with Forchheimer Drag
    Soumak Bhattacharjee
    Evgeny Mortikov
    Andrey Debolskiy
    Evgeny Kadantsev
    Rahul Pandit
    Timo Vesala
    Ganapati Sahoo
    Boundary-Layer Meteorology, 2022, 185 : 259 - 276
  • [32] Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall
    Xiong, Wei-Jian
    Xu, Jinglei
    Wang, Bing-Chen
    Mahmoodi-Jezeh, S. V.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 110
  • [33] Direct numerical simulation of flow characteristics and heat transfer enhancement in a rib-dimpled cooling channel
    You Chul Choi
    Myunggeun Jeong
    Yong Gap Park
    Seong Hyun Park
    Man Yeong Ha
    Journal of Mechanical Science and Technology, 2022, 36 : 1521 - 1535
  • [34] Direct numerical simulation of turbulent flow and heat transfer in a spatially developing turbulent boundary layer laden with particles
    Li, Dong
    Luo, Kun
    Fan, Jianren
    JOURNAL OF FLUID MECHANICS, 2018, 845 : 417 - 461
  • [35] Direct numerical simulation of flow characteristics and heat transfer enhancement in a rib-dimpled cooling channel
    Choi, You Chul
    Jeong, Myunggeun
    Park, Yong Gap
    Park, Seong Hyun
    Ha, Man Yeong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (03) : 1521 - 1535
  • [36] Numerical Simulation of Viscoelastic Fluid Flow in the Curvilinear Micro-Channel
    Cao, Y.
    Li, F. C.
    Zhang, H. N.
    Cai, W. H.
    Yang, J. C.
    RECENT PROGRESSES IN FLUID DYNAMICS RESEARCH - PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON FLUID MECHANICS, 2011, 1376
  • [37] Direct numerical simulation of turbulent concentric annular pipe flow - Part 2: Heat transfer
    Chung, SY
    Sung, HJ
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2003, 24 (03) : 399 - 411
  • [38] INFLUENCE OF RHEOLOGICAL PARAMETERS ON TURBULENT HEAT TRANSFER IN DRAG-REDUCING VISCOELASTIC CHANNEL FLOW
    Tsukahara, Takahiro
    Ishigami, Takahiro
    Kurano, Junya
    Kawaguchi, Yasuo
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 2: CONDENSATION, CONVECTION, MELTING AND SOLIDIFICATION, 2010, : 777 - 786
  • [39] Direct numerical simulation of MHD heat transfer in high Reynolds number turbulent channel flows for Prandtl number of 25
    Yamamoto, Yoshinobu
    Kunugi, Tomoaki
    FUSION ENGINEERING AND DESIGN, 2015, 90 : 17 - 22
  • [40] Numerical simulation of turbulent flow and forced heat transfer of water/CuO nanofluid inside a horizontal dimpled fin
    Pourfattah, Farzad
    Akbari, Omid Ali
    Jafrian, Vahid
    Toghraie, Davood
    Pourfattah, Elnaz
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (06) : 3711 - 3724