Focusing singularity in a derivative nonlinear Schrodinger equation

被引:19
|
作者
Liu, Xiao [1 ]
Simpson, Gideon [2 ]
Sulem, Catherine [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Derivative nonlinear Schrodinger equation; Blowing-up solutions; Rate of blow-up; Dynamic rescaling; WELL-POSEDNESS; MODULATION;
D O I
10.1016/j.physd.2013.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical study of a derivative nonlinear Schrodinger equation with a general power nonlinearity, vertical bar psi vertical bar(2 sigma) psi(x). In the L-2-supercritical regime, sigma > 1, our simulations indicate that there is a finite time singularity. We obtain a precise description of the local structure of the solution in terms of the blowup rate and the asymptotic profile, in a form similar to that of the nonlinear Schrodinger equation with supercritical power law nonlinearity. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条