Focusing singularity in a derivative nonlinear Schrodinger equation

被引:19
作者
Liu, Xiao [1 ]
Simpson, Gideon [2 ]
Sulem, Catherine [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Derivative nonlinear Schrodinger equation; Blowing-up solutions; Rate of blow-up; Dynamic rescaling; WELL-POSEDNESS; MODULATION;
D O I
10.1016/j.physd.2013.07.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical study of a derivative nonlinear Schrodinger equation with a general power nonlinearity, vertical bar psi vertical bar(2 sigma) psi(x). In the L-2-supercritical regime, sigma > 1, our simulations indicate that there is a finite time singularity. We obtain a precise description of the local structure of the solution in terms of the blowup rate and the asymptotic profile, in a form similar to that of the nonlinear Schrodinger equation with supercritical power law nonlinearity. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2006, NONLINEAR FIBER OPTI
[2]   Singular solutions of the L2-supercritical biharmonic nonlinear Schrodinger equation [J].
Baruch, G. ;
Fibich, G. .
NONLINEARITY, 2011, 24 (06) :1843-1859
[3]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[4]   The semiclassical modified nonlinear Schrodinger equation I: Modulation theory and spectral analysis [J].
DiFranco, Jeffery C. ;
Miller, Peter D. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (07) :947-997
[5]   Singular ring solutions of critical and supercritical nonlinear Schrodinger equations [J].
Fibich, Gadi ;
Gavish, Nir ;
Wang, Xiao-Ping .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (01) :55-86
[6]   Well-posedness for one-dimensional derivative nonlinear Schrodinger equations [J].
Hao, Chengchun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (04) :997-1021
[7]   ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
PHYSICA D, 1992, 55 (1-2) :14-36
[8]   On Blow-up Solutions to the 3D Cubic Nonlinear Schrodinger Equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2007, (01)
[9]   Fourth-order time-stepping for stiff PDEs [J].
Kassam, AK ;
Trefethen, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1214-1233
[10]   Smoothing effects and local existence theory for the generalized nonlinear Schrodinger equations [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :489-545