On Sobolev orthogonal polynomials

被引:105
作者
Marcellan, Francisco [1 ,2 ]
Xu, Yuan [3 ]
机构
[1] Univ Carlos III Madrid, Inst Ciencias Matemat ICMAT, Leganes 28911, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
Orthogonal polynomials; Sobolev orthogonal polynomials; Approximation by polynomials;
D O I
10.1016/j.exmath.2014.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev orthogonal polynomials have been studied extensively in the past quarter-century. The research in this field has sprawled into several directions and generates a plethora of publications. This paper contains a survey of the main developments up to now. The goal is to identify main ideas and developments in the field, which hopefully will lend a structure to the mountainous publications and help future research. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:308 / 352
页数:45
相关论文
共 103 条
  • [21] Cachafeiro A., Marcellan F., Moreno-Balcazar J.J., On asymptotic properties of Freud Sobolev orthogonal polynomials, J. Approx. Theory, 125, pp. 26-41, (2003)
  • [22] Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A., Spectral Methods. Fundamentals in Single Domains. Scientific Computation, (2006)
  • [23] Canuto C., Quarteroni A., Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38, pp. 67-86, (1982)
  • [24] Castro M., Duran A.J., Boundedness properties for Sobolev inner products, J. Approx. Theory, 122, pp. 97-111, (2003)
  • [25] Cohen E.A., Zero distribution and behavior of orthogonal polynomials in the Sobolev space W<sup>1,2</sup>[-1, 1], SIAM J. Math. Anal., 6, pp. 105-116, (1975)
  • [26] Chihara T.S., An Introduction to Orthogonal Polynomials, (1978)
  • [27] Dai F., Xu Y., Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Monographs in Mathematics, (2013)
  • [28] de Bruin M.G., A tool for locating zeros of orthogonal polynomials in Sobolev inner product spaces, J. Comput. Appl. Math., 49, pp. 27-35, (1993)
  • [29] de Bruin M.G., Meijer H.G., Zeros of orthogonal polynomials in a non-discrete Sobolev space, Ann. Numer. Math., 2, pp. 233-246, (1995)
  • [30] de Jesus M.N., Marcellan F., Petronilho J., Pinzon N., (M, N)-coherent pairs of order (m, k) and Sobolev orthogonal polynomials, J. Comput. Appl. Math., 256, pp. 16-35, (2014)