On Sobolev orthogonal polynomials

被引:113
作者
Marcellan, Francisco [1 ,2 ]
Xu, Yuan [3 ]
机构
[1] Univ Carlos III Madrid, Inst Ciencias Matemat ICMAT, Leganes 28911, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
Orthogonal polynomials; Sobolev orthogonal polynomials; Approximation by polynomials;
D O I
10.1016/j.exmath.2014.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev orthogonal polynomials have been studied extensively in the past quarter-century. The research in this field has sprawled into several directions and generates a plethora of publications. This paper contains a survey of the main developments up to now. The goal is to identify main ideas and developments in the field, which hopefully will lend a structure to the mountainous publications and help future research. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:308 / 352
页数:45
相关论文
共 103 条
[1]  
Aktas R., Xu Y., Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Not. IMRN, 13, pp. 3087-3131, (2013)
[2]  
Alfaro M., Alvarez de Morales M., Rezola M.L., Orthogonality of the Jacobi polynomials with negative integer parameters, J. Comput. Appl. Math., 145, pp. 379-386, (2002)
[3]  
Alfaro M., Lopez Lagomasino G., Rezola M.L., Some properties of zeros of Sobolev-type orthogonal polynomials, J. Comput. Appl. Math., 69, pp. 171-179, (1996)
[4]  
Alfaro M., Marcellan F., Pena A., Rezola M.L., On linearly related orthogonal polynomials and their functionals, J. Math. Anal. Appl., 287, pp. 307-319, (2003)
[5]  
Alfaro M., Marcellan F., Rezola M.L., Ronveaux A., On orthogonal polynomials of Sobolev type: Algebraic properties and zeros, SIAM J. Math. Anal., 23, pp. 737-757, (1992)
[6]  
Alfaro M., Marcellan F., Rezola M.L., Ronveaux A., Sobolev type orthogonal polynomials: The nondiagonal case, J. Approx. Theory, 83, pp. 737-757, (1995)
[7]  
Alfaro M., Moreno-Balcazar J.J., Pena A., Rezola M.L., A new approach to the asymptotics of Sobolev type orthogonal polynomials, J. Approx. Theory, 163, pp. 460-480, (2011)
[8]  
Alfaro M., Perez T.E., Pinar M.A., Rezola M.L., Sobolev orthogonal polynomials: the discrete-continuous case, Methods Appl. Anal., 6, pp. 593-616, (1999)
[9]  
Althammer P., Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation, J. Reine Angew. Math., 211, pp. 192-204, (1962)
[10]  
Alvarez de Morales M., Perez T.E., Pinar M.A., Sobolev orthogonality for the Gegenbauer polynomials {Cn(-N+1/2)}n≥0, J. Comput. Appl. Math., 100, pp. 111-120, (1998)