Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean

被引:34
|
作者
Wang, Ning [1 ]
Zhong, Xiujuan [1 ]
Cong, Yahui [1 ]
Wang, Tingting [1 ]
Yang, Songnan [1 ]
Li, Yan [1 ]
Gai, Junyi [1 ]
机构
[1] Nanjing Agr Univ, Natl Key Lab Crop Genet & Germplasm Enhancement, Natl Ctr Soybean Improvement,Key Lab Biol & Genet, Minist Agr,Jiangsu Collaborat Innovat Ctr Modern, Nanjing 210095, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
TOBACCO NUCLEAR-PROTEIN; QUANTITATIVE TRAIT LOCI; ZINC-FINGER PROTEIN; PEP-CARBOXYLASE; EXPRESSION ANALYSIS; C-4; PHOTOSYNTHESIS; TRANSGENIC TOBACCO; KINASE-ACTIVITY; SEQUENCE; PLANT;
D O I
10.1038/srep38448
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phosphoenolpyruvate carboxylase (PEPC) plays an important role in assimilating atmospheric CO2 during C-4 and crassulacean acid metabolism photosynthesis, and also participates in various non-photosynthetic processes, including fruit ripening, stomatal opening, supporting carbon-nitrogen interactions, seed formation and germination, and regulation of plant tolerance to stresses. However, a comprehensive analysis of PEPC family in Glycine max has not been reported. Here, a total of ten PEPC genes were identified in soybean and denominated as GmPEPC1-GmPEPC10. Based on the phylogenetic analysis of the PEPC proteins from 13 higher plant species including soybean, PEPC family could be classified into two subfamilies, which was further supported by analyses of their conserved motifs and gene structures. Nineteen cis-regulatory elements related to phytohormones, abiotic and biotic stresses were identified in the promoter regions of GmPEPC genes, indicating their roles in soybean development and stress responses. GmPEPC genes were expressed in various soybean tissues and most of them responded to the exogenously applied phytohormones. GmPEPC6, GmPEPC8 and GmPEPC9 were significantly induced by aluminum toxicity, cold, osmotic and salt stresses. In addition, the enzyme activities of soybean PEPCs were also up-regulated by these treatments, suggesting their potential roles in soybean response to abiotic stresses.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Comprehensive Genome-Wide Analysis and Expression Profiling of the HVA22 Gene Family Unveils Their Potential Roles in Soybean Responses to Abiotic Stresses
    Chen, Qiumin
    Huang, Liyue
    Li, Xinxia
    Ma, Yuan
    Wang, Zhenghao
    Zhang, Chunyu
    Lin, Feng
    Liu, Chen
    JOURNAL OF PLANT GROWTH REGULATION, 2024,
  • [42] The phosphoenolpyruvate carboxylase gene family identification and expression analysis under abiotic and phytohormone stresses in Solanum lycopersicum L
    Waseem, Muhammad
    Ahmad, Fiaz
    GENE, 2019, 690 : 11 - 20
  • [43] Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa
    Li, Xiaohong
    Wang, Xiaotong
    Ma, Xuxia
    Cai, Wenqi
    Liu, Yaling
    Song, Wenxue
    Fu, Bingzhe
    Li, Shuxia
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [44] Genome-Wide Studies of FH Family Members in Soybean (Glycine max) and Their Responses under Abiotic Stresses
    Zhang, Zhenbiao
    Zhang, Zhongqi
    Shan, Muhammad
    Amjad, Zarmeena
    Xue, Jin
    Zhang, Zenglin
    Wang, Jie
    Guo, Yongfeng
    PLANTS-BASEL, 2024, 13 (02):
  • [45] Genome-Wide Characterization and Abiotic Stresses Expression Analysis of Annexin Family Genes in Poplar
    Wei, Hui
    Movahedi, Ali
    Liu, Guoyuan
    Li, Yixin
    Liu, Shiwei
    Yu, Chunmei
    Chen, Yanhong
    Zhong, Fei
    Zhang, Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
  • [46] Genome-wide identification of the AAT gene family in quinoa and analysis of its expression pattern under abiotic stresses
    Li, Hanxue
    Jiang, Chunhe
    Liu, Junna
    Zhang, Ping
    Li, Li
    Li, Rongbo
    Huang, Liubin
    Wang, Xuqin
    Jiang, Guofei
    Bai, Yutao
    Zhang, Lingyuan
    Qin, Peng
    BMC GENOMICS, 2025, 26 (01):
  • [47] Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses
    Han, Ailing
    Xu, Zhengyuan
    Cai, Zhenyu
    Zheng, Yuling
    Chen, Mingjiong
    Wu, Liyuan
    Shen, Qiufang
    PLANTS-BASEL, 2024, 13 (24):
  • [48] Genome-wide identification and expression analysis of the SOD gene family under biotic and abiotic stresses in sweet orange
    Li, Xulin
    Wen, Ke
    Yin, Tuo
    Chen, Chaoying
    Zhu, Ling
    Yang, Xiuyao
    Zi, Yinqiang
    Zhao, Ke
    Zhang, Jiaming
    Zhang, Hanyao
    PLANT BIOTECHNOLOGY REPORTS, 2024, 18 (04) : 535 - 549
  • [49] The HD-ZIP Gene Family in Watermelon: Genome-Wide Identification and Expression Analysis under Abiotic Stresses
    Yan, Xing
    Yue, Zhen
    Pan, Xiaona
    Si, Fengfei
    Li, Jiayue
    Chen, Xiaoyao
    Li, Xin
    Luan, Feishi
    Yang, Jianqiang
    Zhang, Xian
    Wei, Chunhua
    GENES, 2022, 13 (12)
  • [50] Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in Medicago truncatula
    Liu, Xiqiang
    Zhang, Han
    Ma, Lin
    Wang, Zan
    Wang, Kun
    GENES, 2020, 11 (11) : 1 - 18