The Time-Optimal Control Problem of a Kind of Petrowsky System

被引:0
|
作者
Luo, Dongsheng [1 ,2 ]
Wei, Wei [1 ,3 ]
Deng, Hongyong [3 ]
Liao, Yumei [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Zunyi Normal Univ, Sch Math Sci, Zunyi 563006, Peoples R China
[3] Guizhou Minzu Univ, Sch Math, Guiyang 550025, Guizhou, Peoples R China
来源
MATHEMATICS | 2019年 / 7卷 / 04期
关键词
Petrowsky system; time-optimal control; null-controllability; existence of time-optimal control; bang-bang property; 49K15; 49K30; 35B35; 93B07; BANG-BANG PROPERTY; VIBRATION CONTROL; BEAM; PLATES; MASS;
D O I
10.3390/math7040311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the time-optimal control problem about a kind of Petrowsky system and its bang-bang property. To solve this problem, we first construct another control problem, whose null controllability is equivalent to the controllability of the time-optimal control problem of the Petrowsky system, and give the necessary condition for the null controllability. Then we show the existence of time-optimal control of the Petrowsky system through minimum sequences, for the null controllability of the constructed control problem is equivalent to the controllability of the time-optimal control of the Petrowsky system. At last, with the null controllability, we obtain the bang-bang property of the time-optimal control of the Petrowsky system by contradiction, moreover, we know the time-optimal control acts on one subset of the boundary of the vibration system.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ON THE DISCRETE TIME-OPTIMAL REGULAR CONTROL PROBLEM
    FAHMY, MM
    HANAFY, AAR
    SAKR, MF
    INFORMATION AND CONTROL, 1980, 44 (03): : 223 - 235
  • [22] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    A. R. Danilin
    O. O. Kovrizhnykh
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 62 - 71
  • [23] Asymptotics of the Optimal Time in a Time-Optimal Control Problem with a Small Parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 297 : S62 - S71
  • [24] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 61 - 70
  • [25] Asymptotics of the optimal time in a time-optimal control problem with a small parameter
    Danilin, A. R.
    Kovrizhnykh, O. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2015, 21 (01): : 71 - 80
  • [26] ON THE SYSTEM OF JACOBI EQUATIONS IN A TIME-OPTIMAL PROBLEM
    TYNYANSKII, NT
    ARUTYUNOV, AV
    MATHEMATICS OF THE USSR-IZVESTIYA, 1982, 46 (05): : 375 - 397
  • [27] On the Prevention of Vibrations in the Problem of the Time-Optimal Control of a System with Two Degrees of Freedom
    Yu. D. Selyutskiy
    A. M. Formalskii
    Journal of Computer and Systems Sciences International, 2023, 62 : 956 - 967
  • [28] TIME-OPTIMAL PROBLEM FOR SYSTEMS WITH TIME-DELAY IN CONTROL
    BUYAKAS, VI
    AUTOMATION AND REMOTE CONTROL, 1971, 32 (03) : 349 - &
  • [29] One Time-Optimal Problem for a Set-Valued Linear Control System
    T. O. Komleva
    A.V. Plotnikov
    Ukrainian Mathematical Journal, 2021, 72 : 1251 - 1266
  • [30] A new approach to a fuzzy time-optimal control problem
    Amrahov, Ş. Emrah
    Gasilov, N.A.
    Fatullayev, A.G.
    CMES - Computer Modeling in Engineering and Sciences, 2014, 99 (05): : 351 - 369