A note on first passage functionals for hyper-exponential jump-diffusion processes

被引:4
作者
Chen, Yu-Ting [1 ]
Sheu, Yuan-Chung [2 ]
Chang, Ming-Chi [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC, Canada
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
关键词
Hyper-exponential jump-diffusion process; two-sided exit problem; first passage functional;
D O I
10.1214/ECP.v18-2017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This investigation concerns the hyper-exponential jump-diffusion processes. Following the exposition of the two-sided exit problem by Kyprianou [10] and Asmussen and Albrecher [1], this study investigates first passage functionals for these processes. The corresponding boundary value problems are solved to obtain an explicit formula for the first passage functionals.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 2006, INTRO LECT FLUCTUATI
[2]  
Asmussen S., 2010, RUIN PROBABILITIES, V14
[3]  
Bertoin J., 1996, Levy Processes
[4]   A note on scale functions and the time value of ruin for Levy insurance risk processes [J].
Biffis, Enrico ;
Kyprianou, Andreas E. .
INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01) :85-91
[5]  
Chang M.C., PREPRINT
[6]   An ODE approach for the expected discounted penalty at ruin in a jump-diffusion model [J].
Chen, Yu-Ting ;
Lee, Cheng-Few ;
Sheu, Yuan-Chung .
FINANCE AND STOCHASTICS, 2007, 11 (03) :323-355
[7]   Discounted optimal stopping for maxima of some jump-diffusion processes [J].
Gapeev, Pavel V. .
JOURNAL OF APPLIED PROBABILITY, 2007, 44 (03) :713-731
[8]  
Jeanblanc M, 2009, SPRINGER FINANC, P1, DOI 10.1007/978-1-84628-737-4
[9]   First passage times of a jump diffusion process [J].
Kou, SG ;
Wang, H .
ADVANCES IN APPLIED PROBABILITY, 2003, 35 (02) :504-531
[10]  
Kuznetsov A., ANNALS OF APPLIED PR