On the Riccati equations

被引:23
作者
Karaev, M. T. [1 ]
机构
[1] Suleyman Demirel Univ, Dept Tech Programs, Isparta MYO Vocat Sch, TR-32260 Isparta, Turkey
来源
MONATSHEFTE FUR MATHEMATIK | 2008年 / 155卷 / 02期
关键词
Riccati equation; Berezin symbol; Toeplitz operator; invariant subspace;
D O I
10.1007/s00605-008-0542-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give, in terms of so-called Berezin symbols, some necessary conditions for the solvability of the Riccati equation XAX + XB - CX - D = 0 on the set T of all Toeplitz operators on the Hardy space H-2(D).
引用
收藏
页码:161 / 166
页数:6
相关论文
共 19 条
[1]   Existence and uniqueness of contractive solutions of some Riccati equations [J].
Adamjan, V ;
Langer, H ;
Tretter, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :448-473
[2]  
DYNKIN EM, 1973, MATEM ISSLED KISHINE, V8, P14
[3]  
ENGLIS M, 1995, LINEAR ALGEBRA APPL, V223, P171
[4]  
GAMBLER LC, 1977, THESIS STATE U NEW Y
[5]   Analysis and modification of Newton's method for algebraic Riccati equations [J].
Guo, CH ;
Lancaster, P .
MATHEMATICS OF COMPUTATION, 1998, 67 (223) :1089-1105
[6]   10 PROBLEMS IN HILBERT SPACE [J].
HALMOS, PR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 76 (05) :887-&
[7]  
Hoffman K, 1962, BANACH SPACES ANAL F
[8]   On some problems related to Berezin symbols [J].
Karaev, MT .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (10) :715-718
[9]   Berezin symbols and Schatten-von Neumann classes [J].
Karaev, MT .
MATHEMATICAL NOTES, 2002, 72 (1-2) :185-192
[10]  
Lancaster P., 1995, Algebraic riccati equations