Choice number of some complete multi-partite graphs

被引:26
作者
Enomoto, H [1 ]
Ohba, K [1 ]
Ota, K [1 ]
Sakamoto, J [1 ]
机构
[1] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
list coloring; complete multi-partite graphs;
D O I
10.1016/S0012-365X(01)00059-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One of the authors has conjectured that every graph G with 2chi(G) + 1 or fewer vertices is chi(G)-choosable. Motivated by this, we investigate the choice numbers of some complete k-partite graphs of order slightly larger than 2k, and settle the conjecture for some special cases. We also present several complete multi-partite graphs whose choice numbers are not equal to their chromatic numbers. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 8 条
[1]  
Erd o P., 1979, Congr. Numer., V26, P125
[2]   THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH [J].
GALVIN, F .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :153-158
[3]  
Gravier S, 1998, J GRAPH THEOR, V27, P87, DOI 10.1002/(SICI)1097-0118(199802)27:2<87::AID-JGT4>3.0.CO
[4]  
2-B
[5]   Choice number of 3-colorable elementary graphs [J].
Gravier, S ;
Maffray, F .
DISCRETE MATHEMATICS, 1997, 165 :353-358
[6]   On the choosability of complete multipartite graphs with part size three [J].
Kierstead, HA .
DISCRETE MATHEMATICS, 2000, 211 (1-3) :255-259
[7]  
OHBA K, CHROMATIC CHOOSABLE
[8]  
Vizing V.G., 1976, Diskret. Analiz. no. 29, Metody Diskret. Anal. v Teorii Kodovi Skhem, V29, P3