Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery

被引:105
作者
Devaguptapu, Chaitanya [1 ]
Akolekar, Ninad [1 ]
Sharma, Manuj M. [2 ]
Balasubramanian, Vineeth N. [1 ]
机构
[1] Indian Inst Technol, Hyderabad, India
[2] Def Res & Dev Org, ANURAG, New Delhi, India
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019) | 2019年
关键词
D O I
10.1109/CVPRW.2019.00135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Can we improve detection in the thermal domain by borrowing features from rich domains like visual RGB? In this paper, we propose a 'pseudo-multimodal' object detector trained on natural image domain data to help improve the performance of object detection in thermal images. We assume access to a large-scale dataset in the visual RGB domain and relatively smaller dataset (in terms of instances) in the thermal domain, as is common today. We propose the use of well-known image-to-image translation frameworks to generate pseudo-RGB equivalents of a given thermal image and then use a multi-modal architecture for object detection in the thermal image. We show that our framework outperforms existing benchmarks without the explicit need for paired training examples from the two domains. We also show that our framework has the ability to learn with less data from thermal domain when using our approach.
引用
收藏
页码:1029 / 1038
页数:10
相关论文
共 41 条
[1]  
Abbott R., 2017, P 5 IMA C MATH DEF, V11
[2]  
[Anonymous], 2017, CoRR
[3]  
[Anonymous], 2017, CORR
[4]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[5]  
Berg A., 2015, IMAGE ANAL
[6]  
Berg A., 1744, THESIS
[7]  
Bertozzi M, 2007, 2007 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1-3, P1013
[8]  
Breckon Toby P., 2013, MULTIMODAL TARGET DE
[9]  
Chevalier M., 2016, P 7 INT S OPTR DEF S
[10]  
Choi H, 2016, INT C PATT RECOG, P621, DOI 10.1109/ICPR.2016.7899703