Spin-photonic devices based on optical integration of Pancharatnam-Berry phase elements

被引:1
作者
Zhou, Junxiao [1 ]
Liu, Yachao [1 ]
Ke, Yougang [1 ]
Liu, Yuanyuan [1 ]
Luo, Hailu [1 ]
Wen, Shuangchun [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Lab Spin Photon, Changsha 410082, Hunan, Peoples R China
来源
SPINTRONICS IX | 2016年 / 9931卷
基金
中国国家自然科学基金;
关键词
optical integration; Pancharatnam-Berry phase; ORBITAL ANGULAR-MOMENTUM; LIGHT; BEAMS; METASURFACE; GENERATION; VORTEX; SPACE; DISLOCATIONS; METAMATERIAL; SYMMETRY;
D O I
10.1117/12.2236459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Development of spin-photonic devices requires the integration of abundant functions and the miniaturization of the elements. Pancharatnam-Berry phase elements have fulfilled these requirements and can be attained by using dielectric metasurfaces with subwavelength nanostructures. Here, we review some of our works on PancharatnamBerry phase elements and make an introduction of some integrated spin-photonic devices. We propose to integrate Pancharatnam-Berry phase lens into dynamical phase lens, which can be conveniently used to modulate spin states of photons. By integrating a Pancharatnam-Berry phase lens into a conventional plano-concave lens, we can obtain spin-filtering of photons. Moreover, we demonstrate that the generation of complex wavefronts characterized with different spin states can be implemented by the Pancharatnam-Berry phase lens. Further, based on the spin-dependent property of Pancharatnam-Berry phase element, we realize the three-dimensional photonic spin Hall effect with lateral and longitudinal spin-dependent splitting simultaneously. We foresee that this optical integration concept of designing Pancharatnam-Berry phase elements, which circumvents the limitations of bulky optical components in conventional integrated optics, will significantly impact multipurpose optical elements, particularly spin-based photonics devices.
引用
收藏
页数:11
相关论文
共 51 条
[11]   Modified weak measurements for the detection of the photonic spin Hall effect [J].
Chen, Shizhen ;
Zhou, Xinxing ;
Mi, Chengquan ;
Luo, Hailu ;
Wen, Shuangchun .
PHYSICAL REVIEW A, 2015, 91 (06)
[12]   Longitudinal Multifoci Metalens for Circularly Polarized Light [J].
Chen, Xianzhong ;
Chen, Ming ;
Mehmood, Muhammad Qasim ;
Wen, Dandan ;
Yue, Fuyong ;
Qiu, Cheng-Wei ;
Zhang, Shuang .
ADVANCED OPTICAL MATERIALS, 2015, 3 (09) :1201-1206
[13]   Dual-polarity plasmonic metalens for visible light [J].
Chen, Xianzhong ;
Huang, Lingling ;
Muehlenbernd, Holger ;
Li, Guixin ;
Bai, Benfeng ;
Tan, Qiaofeng ;
Jin, Guofan ;
Qiu, Cheng-Wei ;
Zhang, Shuang ;
Zentgraf, Thomas .
NATURE COMMUNICATIONS, 2012, 3
[14]   Singular Optics: Optical Vortices and Polarization Singularities [J].
Dennis, Mark R. ;
O'Holleran, Kevin ;
Padgett, Miles J. .
PROGRESS IN OPTICS, VOL 53, 2009, 53 :293-363
[15]   Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency [J].
Ding, Xumin ;
Monticone, Francesco ;
Zhang, Kuang ;
Zhang, Lei ;
Gao, Dongliang ;
Burokur, Shah Nawaz ;
de Lustrac, Andre ;
Wu, Qun ;
Qiu, Cheng-Wei ;
Alu, Andrea .
ADVANCED MATERIALS, 2015, 27 (07) :1195-1200
[16]   CURRENT-INDUCED SPIN ORIENTATION OF ELECTRONS IN SEMICONDUCTORS [J].
DYAKONOV, MI ;
PEREL, VI .
PHYSICS LETTERS A, 1971, A 35 (06) :459-&
[17]   Optimal Frames for Polarization State Reconstruction [J].
Foreman, Matthew R. ;
Favaro, Alberto ;
Aiello, Andrea .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[18]   Airy beams generated by ultrafast laser-imprinted space-variant nanostructures in glass [J].
Gecevicius, Mindaugas ;
Beresna, Martynas ;
Drevinskas, Rokas ;
Kazansky, Peter G. .
OPTICS LETTERS, 2014, 39 (24) :6791-6794
[19]  
Goodman Joseph W., 2005, Introduction to Fourier optics
[20]   Holographic generation of complex fields with spatial light modulators: Application to quantum key distribution [J].
Gruneisen, Mark T. ;
Miller, Warner A. ;
Dymale, Raymond C. ;
Sweiti, Ayman M. .
APPLIED OPTICS, 2008, 47 (04) :A32-A42