Representation schemes and rigid maximal Cohen-Macaulay modules

被引:2
作者
Dao, Hailong
Shipman, Ian
机构
[1] Lawrence, KS
[2] Salt Lake City, UT
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 01期
关键词
FINITE GLOBAL DIMENSION; ALGEBRA; RINGS;
D O I
10.1007/s00029-016-0226-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be an algebraically closed field and A be a finitely generated, centrally finite, nonnegatively graded (not necessarily commutative) -algebra. In this note we construct a representation scheme for graded maximal Cohen-Macaulay A modules. Our main application asserts that when A is commutative with an isolated singularity, for a fixed multiplicity, there are only finitely many indecomposable rigid (i.e, with no nontrivial self-extensions) MCM modules up to shifting and isomorphism. We appeal to a result by Keller, Murfet, and Van den Bergh to prove a similar result for rings that are completion of graded rings. Finally, we discuss how finiteness results for rigid MCM modules are related to recent work by Iyama and Wemyss on maximal modifying modules over compound Du Val singularities.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 21 条
[1]   RINGS OF FINITE GLOBAL DIMENSION INTEGRAL OVER THEIR CENTERS [J].
BROWN, KA ;
HAJARNAVIS, CR ;
MACEACHARN, AB .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (01) :67-93
[2]   A Cohen-Macaulay algebra has only finitely many semidualizing modules [J].
Chrstensen, Lars Winther ;
Sather-Wagstaff, Sean .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :601-603
[3]   Noncommutative geometry and quiver algebras [J].
Crawley-Boevey, William ;
Etingof, Pavel ;
Ginzburg, Victor .
ADVANCES IN MATHEMATICS, 2007, 209 (01) :274-336
[4]   ALGEBRA EXTENSIONS AND NONSINGULARITY [J].
CUNTZ, JC ;
QUILLEN, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :251-289
[5]  
Dao H., 2013, COMMUTATIVE ALGEBRA, P335
[6]   Boundary and shape of Cohen-Macaulay cone [J].
Dao, Hailong ;
Kurano, Kazuhiko .
MATHEMATISCHE ANNALEN, 2016, 364 (3-4) :713-736
[7]  
Dao HL, 2013, AM J MATH, V135, P561
[8]  
Gabriel P., 1974, CARLETON MATH LECT N, V9
[9]  
Happel D, 1995, MATH APPL, V343, P257
[10]   Maximal modifications and Auslander-Reiten duality for non-isolated singularities [J].
Iyama, Osamu ;
Wemyss, Michael .
INVENTIONES MATHEMATICAE, 2014, 197 (03) :521-586