Symbolic analysis of chaotic signals and turbulent fluctuations

被引:75
作者
Lehrman, M [1 ]
Rechester, AB [1 ]
White, RB [1 ]
机构
[1] PRINCETON PLASMA PHYS LAB,PRINCETON,NJ 08543
关键词
D O I
10.1103/PhysRevLett.78.54
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symbolic analysis introduced in this paper allows quantitative description of of dynamical coupling between different time signals. Ln order to demonstrate how this method works we applied it to the explicit examples of chaotic signals. Our results appear to be quite robust when external noise is added.
引用
收藏
页码:54 / 57
页数:4
相关论文
共 13 条
  • [1] KOLMOGOROV AN, 1959, DOKL AKAD NAUK SSSR+, V124, P754
  • [2] KOLMOGOROV AN, 1958, DOKL AKAD NAUK SSSR+, V119, P861
  • [3] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [4] 2
  • [5] RADIAL SCALE LENGTH OF TURBULENT FLUCTUATIONS IN THE MAIN CORE OF TFTR PLASMAS
    MAZZUCATO, E
    NAZIKIAN, R
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (12) : 1840 - 1843
  • [6] GEOMETRY FROM A TIME-SERIES
    PACKARD, NH
    CRUTCHFIELD, JP
    FARMER, JD
    SHAW, RS
    [J]. PHYSICAL REVIEW LETTERS, 1980, 45 (09) : 712 - 716
  • [7] SYMBOLIC KINETIC-ANALYSIS OF 2-DIMENSIONAL MAPS
    RECHESTER, AB
    WHITE, RB
    [J]. PHYSICS LETTERS A, 1991, 158 (1-2) : 51 - 56
  • [8] SYMBOLIC KINETIC-EQUATION FOR A CHAOTIC ATTRACTOR
    RECHESTER, AB
    WHITE, RB
    [J]. PHYSICS LETTERS A, 1991, 156 (7-8) : 419 - 424
  • [9] RECHESTER AB, 1996, B AM PHYS SOC, V41, P1457
  • [10] Shannon Claude E., 1964, The Mathematical Theory of Communication