Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor

被引:79
|
作者
Angelin, M. Dhivya [1 ,2 ]
Rajkumar, S. [3 ]
Merlin, J. Princy [3 ]
Xavier, A. Robert [2 ]
Franklin, M. [4 ]
Ravichandran, A. T. [2 ]
机构
[1] Bharathidasan Univ, Bishop Heber Coll Autonomous, PG & Res Dept Phys, Tiruchirappalli 620017, Tamil Nadu, India
[2] Bharathidasan Univ, Natl Coll Autonomous, PG & Res Dept Phys, Tiruchirappalli 620001, Tamil Nadu, India
[3] Bharathidasan Univ, Bishop Heber Coll Autonomous, PG & Res Dept Chem, Tiruchirappalli 620017, Tamil Nadu, India
[4] Alagappa Chettiar Govt Coll Engn & Technol, Dept Mech Engn, Karaikkudi 630003, Tamil Nadu, India
关键词
Zr-doped ZnOnanostructure; Cyclic voltammetry; Supercapacitor; Specific capacitance; REDUCED GRAPHENE OXIDE; THIN-FILMS; NI-FOAM; NANOWIRE ARRAYS; COMPOSITE ELECTRODES; OPTICAL-PROPERTIES; LOW-TEMPERATURE; POROUS CARBON; NANOPARTICLES; CO;
D O I
10.1007/s11581-020-03681-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simple electrochemical capacitors are promising energy storage devices because of their power capability, charge/discharge rates and life cycle. Zinc oxide is an inexpensive and eco-friendly material which can be used as a supercapacitor electrode relative to other materials with great features. With a view to enhance the electrochemical performance of ZnO (Csp of 324), the present work is focused to synthesize modified ZnO nanostructures by the dopant Zr in three different compositions (3, 6 and 9 wt% Zr-doped ZnO) via chemical coprecipitation method. The synthesized materials were characterized by physio-chemical methods. The significant capacitive behaviour of ZnO and modified ZnO and 9 wt%Zr-doped ZnO nanostructure were investigated by cyclic voltammetric (CV) studies, galvanostatic charge-discharge (GCD) analysis and electrochemical impedance spectroscopic (EIS) methods in aqueous 1 M KOH. The newly fabricated 9 wt% Zr-doped ZnO electrode exhibited excellent specific capacitance of 518 Fg(-1) at a current density of 1 Ag-1. Additionally, it depicted the capacitance retention of 94% even after 5000 successive GCD cycles. Moreover, the as-prepared materials demonstrated electrochemical reversible nature.
引用
收藏
页码:5757 / 5772
页数:16
相关论文
共 50 条
  • [41] From barley straw biomass to N/S co-doped as electrode material for high-performance supercapacitor applications
    Jeloo, Zohreh Asadi Ghare
    Ghasemzadeh, Sakineh
    Hosseini-Monfared, Hassan
    Javanbakht, Mehran
    Naji, Leila
    Najaflo, Mitra
    Hamidi, Susan
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 323
  • [42] Graphitic Carbon Nitride Doped Copper-Manganese Alloy as High-Performance Electrode Material in Supercapacitor for Energy Storage
    Siwal, Samarjeet Singh
    Zhang, Qibo
    Sun, Changbin
    Thakur, Vijay Kumar
    NANOMATERIALS, 2020, 10 (01)
  • [43] Electrochemical performance of Quercus infectoria as a supercapacitor carbon electrode material
    Akdemir, Murat
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (06) : 7722 - 7731
  • [44] Nitrogen and phosphorous Co-Doped Laser-Induced Graphene: A High-Performance electrode material for supercapacitor applications
    Khandelwal, Mahima
    Van Tran, Chau
    Bin In, Jung
    APPLIED SURFACE SCIENCE, 2022, 576
  • [45] Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor
    Mary, A. Juliet Christina
    Bose, A. Chandra
    APPLIED SURFACE SCIENCE, 2017, 425 : 201 - 211
  • [46] ⍺-NSA doped PPy @ Ti3C2Tx hybrid material as a high-performance supercapacitor electrode
    Bahar Ronnasi
    Mehrnoosh Mahmoodian
    Somayeh Mohammadi
    Mohammadreza Yasoubi
    Zeinab Sanaee
    Journal of Materials Research, 2022, 37 : 3965 - 3975
  • [47] High-Performance 3D Nanostructured Silver Electrode for Micro-Supercapacitor Application
    Gonzalez, Ana Silvia
    Garcia, Javier
    Vega, Victor
    Caballero Flores, Rafael
    Prida, Victor M.
    ACS OMEGA, 2023, 8 (43): : 40087 - 40098
  • [48] Electrochemical Analysis of MnO2 (α, β, and γ)-Based Electrode for High-Performance Supercapacitor Application
    Devi, Raman
    Kumar, Vinay
    Kumar, Sunil
    Bulla, Mamta
    Sharma, Shruti
    Sharma, Ashutosh
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [49] P- N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications
    Wang, Tianyang
    Liu, Jie
    Ma, Yuxin
    Han, Shuang
    Gu, Changdong
    Lian, Jianshe
    Electrochimica Acta, 2021, 392
  • [50] P- N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications
    Wang, Tianyang
    Liu, Jie
    Ma, Yuxin
    Han, Shuang
    Gu, Changdong
    Lian, Jianshe
    ELECTROCHIMICA ACTA, 2021, 392