DIGITAL SOIL MAPPING: STRATEGY FOR DATA PRE-PROCESSING

被引:0
作者
Ten Caten, Alexandre [1 ]
Diniz Dalmolin, Ricardo Simao [2 ]
Chimelo Ruiz, Luis Fernando [3 ]
机构
[1] Univ Fed Santa Catarina, BR-89520000 Curitibanos, SC, Brazil
[2] Univ Fed Santa Catarina, Dept Soil, BR-97105900 Santa Maria, RS, Brazil
[3] Colegio Politecn UFSM, BR-97105900 Santa Maria, RS, Brazil
来源
REVISTA BRASILEIRA DE CIENCIA DO SOLO | 2012年 / 36卷 / 04期
关键词
choropleth map; pedometrics; soil survey; decision tree; KNOWLEDGE; MAP;
D O I
暂无
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.
引用
收藏
页码:1083 / 1091
页数:9
相关论文
共 50 条
  • [41] Efficiency Comparison of Conventional and Digital Soil Mapping for Updating Soil Maps
    Kempen, Bas
    Brus, Dick J.
    Stoorvogel, Jetse J.
    Heuvelink, Gerard B. M.
    de Vries, Folkert
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2012, 76 (06) : 2097 - 2115
  • [42] A Qualitative Comparison of Conventional Soil Survey and Digital Soil Mapping Approaches
    Roecker, S. M.
    Howell, D. W.
    Haydu-Houdeshell, C. A.
    Blinn, C.
    DIGITAL SOIL MAPPING: BRIDGING RESEARCH, ENVIRONMENTAL APPLICATION, AND OPERATION, 2010, 2 : 369 - 384
  • [43] Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China
    Yang, Haoxuan
    Zhang, Xiaokang
    Xu, Mengyuan
    Shao, Shuai
    Wang, Xiang
    Liu, Wenqi
    Wu, Danqian
    Ma, Yuyang
    Bao, Yilin
    Zhang, Xinle
    Liu, Huanjun
    CATENA, 2020, 184
  • [44] Digital soil mapping: A brief history and some lessons
    Minasny, Budiman
    McBratney, Alex B.
    GEODERMA, 2016, 264 : 301 - 311
  • [45] Digital mapping of soil attributes using machine learning
    da Matta Campbell, Patricia Morais
    Francelino, March Rocha
    Fernandes Filho, Elpidio Inacio
    Rocha, Pablo de Azevedo
    de Azevedo, Bruno Campbell
    REVISTA CIENCIA AGRONOMICA, 2019, 50 (04): : 519 - 528
  • [46] Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
    Zeraatpisheh, Mojtaba
    Ayoubi, Shamsollah
    Jafari, Azam
    Finke, Peter
    GEOMORPHOLOGY, 2017, 285 : 186 - 204
  • [47] Extrapolation of a structural equation model for digital soil mapping
    Angelini, M. E.
    Kempen, B.
    Heuvelink, G. B. M.
    Temme, A. J. A. M.
    Ransom, M. D.
    GEODERMA, 2020, 367
  • [48] Can citizen science assist digital soil mapping?
    Rossiter, David G.
    Liu, Jing
    Carlisle, Steve
    Zhu, A. -Xing
    GEODERMA, 2015, 259 : 71 - 80
  • [49] Digital soil class mapping in Brazil: a systematic review
    Coelho, Fabricio Fernandes
    Giasson, Elvio
    Campos, Alcinei Ribeiro
    Tiecher, Tales
    Ferreira Costa, Jose Janderson
    Coblinski, Joao Augusto
    SCIENTIA AGRICOLA, 2021, 78 (05):
  • [50] Digital mapping of soil classes in Algeria - A comparison of methods
    Assami, Tarek
    Hamdi-Aissa, Baelhadj
    GEODERMA REGIONAL, 2019, 16