General optimal euclidean sobolev and Gagliardo-Nirenberg inequalities

被引:1
作者
Ceccon, J [1 ]
Montenegro, M [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, ICEx, BR-30123970 Belo Horizonte, MG, Brazil
来源
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS | 2005年 / 77卷 / 04期
关键词
best constants; Gagliardo-Nirenberg inequalities; mass transportation; convex analysis;
D O I
10.1590/S0001-37652005000400001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transportation and convex analysis results. Explicit extremals and the computation of some optimal constants are also provided. In particular we extend the optimal Gagliardo-Nirenberg inequality proved by Del Pino and Dolbeault 2003 and the optimal inequalities proved by Cordero-Erausquin et al. 2004.
引用
收藏
页码:581 / 587
页数:7
相关论文
共 6 条
[1]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[2]   A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities [J].
Cordero-Erausquin, D ;
Nazaret, B ;
Villani, C .
ADVANCES IN MATHEMATICS, 2004, 182 (02) :307-332
[3]   The optimal Euclidean Lp-Sobolev logarithmic inequality [J].
Del Pino, M ;
Dolbeault, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) :151-161
[4]   The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations [J].
Gentil, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (02) :591-599
[5]   Existence and uniqueness of monotone measure-preserving maps [J].
McCann, RJ .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :309-323
[6]  
Talenti G., 1976, Ann. di Mat. Pura ed Appl., V110, P353, DOI DOI 10.1007/BF02418013