Evaluation of 3'-deoxy-3'-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas

被引:33
作者
Shinomiya, Aya [1 ]
Kawai, Nobuyuki [1 ]
Okada, Masaki [1 ]
Miyake, Keisuke [1 ]
Nakamura, Takehiro [2 ]
Kushida, Yoshio [3 ]
Haba, Reiji [3 ]
Kudomi, Nobuyuki [4 ]
Yamamoto, Yuka [5 ]
Tokuda, Masaaki [6 ]
Tamiya, Takashi [1 ]
机构
[1] Kagawa Univ, Fac Med, Dept Neurol Surg, Takamatsu, Kagawa 7610793, Japan
[2] Kagawa Univ, Fac Med, Dept Neurobiol, Takamatsu, Kagawa 7610793, Japan
[3] Kagawa Univ, Fac Med, Dept Diagnost Pathol, Takamatsu, Kagawa 7610793, Japan
[4] Kagawa Univ, Fac Med, Dept Med Phys, Takamatsu, Kagawa 7610793, Japan
[5] Kagawa Univ, Fac Med, Dept Radiol, Takamatsu, Kagawa 7610793, Japan
[6] Kagawa Univ, Fac Med, Dept Cell Physiol, Takamatsu, Kagawa 7610793, Japan
关键词
F-18-Fluorothymidine; Positron emission tomography; Thymidine kinase-1; Proliferation; Glioma; POSITRON-EMISSION-TOMOGRAPHY; HIGH-GRADE GLIOMA; BRAIN-TUMORS; IMAGING PROLIFERATION; IN-VIVO; FLT-PET; FDG;
D O I
10.1007/s00259-012-2275-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The thymidine analog 3'-deoxy-3'-[F-18]fluorothymidine (F-18-FLT) has been developed as a positron emission tomography (PET) tracer to assess the proliferation activity of tumors in vivo. The present study investigated the relationship between the kinetic parameters of F-18-FLT in vivo and thymidine kinase-1 (TK-1) expression and cell proliferation rate in vitro, and blood-brain barrier (BBB) breakdown in human brain gliomas. A total of 21 patients with newly diagnosed gliomas were examined by F-18-FLT PET kinetic analysis. Maximum standardized uptake value (SUVmax) and tumor-to-normal (T/N) ratio of F-18-FLT in the tumor and F-18-FLT kinetic parameters in the corresponding contralateral region were determined. The expression levels of TK-1 protein and mRNA were determined by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR), respectively, using surgical specimens. The cell proliferation rate of the tumor was determined in terms of the Ki-67 labeling index. BBB breakdown was evaluated on MR images with contrast enhancement. F-18-FLT SUVmax and T/N ratio were significantly correlated with the influx rate constant (K (1); P = 0.001 and P < 0.001, respectively), but not with the phosphorylation rate constant (k (3)). IHC and real-time PCR studies demonstrated a significant correlation between K (1) and TK-1 mRNA expression (P = 0.001), but not between k (3) and TK-1 protein and mRNA expression. Linear regression analysis revealed a significant correlation between K (1) and the Ki-67 index (P = 0.003), but not between k (3) and the Ki-67 index. TK-1 mRNA expression was significantly correlated with the Ki-67 index (P = 0.009). F-18-FLT SUVmax and T/N ratio were significantly correlated with BBB breakdown evaluated by contrast enhancement in MR images (P = 0.003 and P = 0.011, respectively). These results indicate that F-18-FLT uptake in the tumor is significantly related to transport through the disrupted BBB, but not through phosphorylation activity. Although the tissue TK-1 expression reflects tumor proliferation activity, the phosphorylation rate constant k (3) determined by F-18-FLT PET kinetic analysis does not accurately reflect TK-1 expression in the tissue and should not be used as a surrogate biomarker of cell proliferation activity in human brain gliomas.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [31] Comparison of 4′-[methyl-11C]thiothymidine (11C-4DST) and 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) PET/CT in human brain glioma imaging
    Yasunori Toyota
    Keisuke Miyake
    Nobuyuki Kawai
    Tetsuhiro Hatakeyama
    Yuka Yamamoto
    Jun Toyohara
    Yoshihiro Nishiyama
    Takashi Tamiya
    EJNMMI Research, 5
  • [32] An Evaluation of 2-deoxy-2-[18F]Fluoro-D-Glucose and 3'-deoxy-3'-[18F]-Fluorothymidine Uptake in Human Tumor Xenograft Models
    Keen, Heather
    Pichler, Bernd
    Kukuk, Damaris
    Duchamp, Olivier
    Raguin, Olivier
    Shannon, Aoife
    Whalley, Nichola
    Jacobs, Vivien
    Bales, Juliana
    Gingles, Neill
    Ricketts, Sally-Ann
    Wedge, Stephen R.
    MOLECULAR IMAGING AND BIOLOGY, 2012, 14 (03) : 355 - 365
  • [33] How Long of a Dynamic 3-Deoxy-3-[18F]fluorothymidine ([18F]FLT) PET Acquisition Is Needed for Robust Kinetic Analysis in Breast Cancer?
    Zhang, Jun
    Liu, Xiaoli
    Knopp, Michelle I.
    Ramaswamy, Bhuvaneswari
    Knopp, Michael V.
    MOLECULAR IMAGING AND BIOLOGY, 2019, 21 (02) : 382 - 390
  • [34] Relative skeletal distribution of proliferating marrow in the adult dog determined using 3′-deoxy-3′-[18F]fluorothymidine
    Rowe, Joshua A.
    Morandi, Federica
    Osborne, Dustin R.
    Wall, Jonathan S.
    Kennel, Stephen J.
    Reed, Robert B.
    LeBlanc, Amy K.
    ANATOMIA HISTOLOGIA EMBRYOLOGIA, 2019, 48 (01) : 46 - 52
  • [35] Reproducibility of the kinetic analysis of 3′-deoxy-3′-[18F] fluorothymidine positron emission tomography in mouse tumor models
    Choi, Seung Jin
    Kim, Seog Young
    Kim, Su Jin
    Lee, Jae Sung
    Lee, Sang Ju
    Park, Soo Ah
    Lee, Seung Jin
    Yun, Sung-Cheol
    Im, Ki Chun
    Oh, Seung Jun
    Kim, Sang-We
    Kim, Jae Seung
    Ryu, Jin Sook
    Moon, Dae Hyuk
    NUCLEAR MEDICINE AND BIOLOGY, 2009, 36 (07) : 711 - 719
  • [36] Semiautomatic synthesis of 3′-deoxy-3′-[18F]fluorothymidine using three precursors
    Teng, B
    Wang, SZ
    Fu, Z
    Dang, YH
    Wu, ZH
    Liu, LQ
    APPLIED RADIATION AND ISOTOPES, 2006, 64 (02) : 187 - 193
  • [37] [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors
    Choi, SJ
    Kim, JS
    Kim, JH
    Oh, SJ
    Lee, JG
    Kim, CJ
    Ra, YS
    Yeo, JS
    Ryu, JS
    Moon, DH
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2005, 32 (06) : 653 - 659
  • [38] [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors
    Seung Jin Choi
    Jae Seung Kim
    Jeong Hoon Kim
    Seung Jun Oh
    Jeong Gyo Lee
    Chang Jin Kim
    Young Shin Ra
    Jeong Seok Yeo
    Jin Sook Ryu
    Dae Hyuk Moon
    European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32 : 653 - 659
  • [39] Exploratory Analysis of 18F-3'-deoxy-3'-fluorothymidine (18F-FLT) PET/CT-Based Radiomics for the Early Evaluation of Response to Neoadjuvant Chemotherapy in Patients With Locally Advanced Breast Cancer
    Fantini, Lorenzo
    Belli, Maria Luisa
    Azzali, Irene
    Loi, Emiliano
    Bettinelli, Andrea
    Feliciani, Giacomo
    Mezzenga, Emilio
    Fedeli, Anna
    Asioli, Silvia
    Paganelli, Giovanni
    Sarnelli, Anna
    Matteucci, Federica
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [40] Evaluation of the radiochemical impurities arising during the competitive fluorination of nosyl group during the synthesis of 3′-deoxy-3′-fluorothymidine, [18F]FLT
    Nandy, S. K.
    Krishnamurthy, N. V.
    Rajan, M. G. R.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2010, 283 (01) : 245 - 251