OPERATOR ALGEBRAS OF HIGHER RANK NUMERICAL SEMIGROUPS

被引:0
|
作者
Kakariadis, Evgenios T. A. [1 ]
Katsoulis, Elias G. [2 ]
Li, Xin [3 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] East Carolina Univ, Dept Math, Greenville, NC 27858 USA
[3] Univ Glasgow, Sch Math & Stat, Univ Pl, Glasgow G12 8QQ, Lanark, Scotland
关键词
Numerical semigroups; C*-envelope; rigidity; K-THEORY; CROSSED-PRODUCTS; REPRESENTATIONS;
D O I
10.1090/proc/15096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arveson's Dilation Problem in the negative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.
引用
收藏
页码:4423 / 4433
页数:11
相关论文
共 50 条
  • [1] Operator algebras for higher rank analysis and their application to factorial languages
    Dor-On, Adam
    Kakariadis, Evgenios T. A.
    JOURNAL D ANALYSE MATHEMATIQUE, 2021, 143 (02): : 555 - 613
  • [2] 2-Permutations of lattice vertex operator algebras: Higher rank
    Dong, Chongying
    Xu, Feng
    Yu, Nina
    JOURNAL OF ALGEBRA, 2017, 476 : 1 - 25
  • [3] Semicrossed Products of Operator Algebras by Semigroups
    Davidson, Kenneth R.
    Fuller, Adam H.
    Kakariadis, Evgenios T. A.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 247 (1168) : 1 - +
  • [4] C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ SEMIGROUPS
    Antoine, Ramon
    Perera, Francesc
    Robert, Leonel
    Thiel, Hannes
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (01) : 33 - 99
  • [5] Classification of some vertex operator algebras of rank 3
    Franc, Cameron
    Mason, Geoffrey
    ALGEBRA & NUMBER THEORY, 2020, 14 (06) : 1613 - 1668
  • [6] On the stable rank of algebras of operator fields over metric spaces
    Ng, PW
    Sudo, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (01) : 228 - 236
  • [7] Simplicity of Higher Rank Triplet W-Algebras
    Sugimoto, Shoma
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (08) : 7169 - 7199
  • [8] E-theoretic duality for higher rank graph algebras
    Popescu, I
    Zacharias, J
    K-THEORY, 2005, 34 (03): : 265 - 282
  • [9] BRANCHING SYSTEMS FOR HIGHER-RANK GRAPH C*-ALGEBRAS
    Goncalves, Daniel
    Li, Hui
    Royer, Danilo
    GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (03) : 731 - 751
  • [10] Rationality of vertex operator algebra VL+: higher rank
    Dong, Chongying
    Jiang, Cuipo
    Lin, Xingjun
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 799 - 826