共 50 条
Characterization of insulin-like growth factor-I and its receptor and binding proteins in transected nerves and cultured Schwann cells
被引:1
|作者:
Cheng, HL
Randolph, A
Yee, D
Delafontaine, P
Tennekoon, G
Feldman, EL
机构:
[1] UNIV MICHIGAN, DEPT NEUROL, ANN ARBOR, MI 48109 USA
[2] UNIV MICHIGAN, PROGRAM NEUROSCI, ANN ARBOR, MI 48109 USA
[3] UNIV TEXAS, HLTH SCI CTR, SAN ANTONIO, TX USA
[4] EMORY UNIV, ATLANTA, GA 30322 USA
关键词:
insulin-like growth factor;
receptor;
binding protein;
schwann cells;
nerve transection;
D O I:
暂无
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The insulin-like growth factors (IGFs) are trophic factors whose growth-promoting actions are mediated via the IGF-I receptor and modulated by six IGF binding proteins (IGFBPs). In this study, we observed increased transcripts of both IGF-I and IGF-I receptor after rat sciatic nerve transection. Schwann cells (SCs) were the main source of IGF-I and IGFBP-5 immunoreactivity until 7 days after nerve transection, when invading macrophages in the distal nerve stumps were strongly IGF-I positive. In vitro, IGF-I promoted SC mitogenesis. Northern analysis revealed that SCs expressed IGF-I receptor and IGFBP-5. IGF-I treatment increased the intensity of IGFBP-5 without affecting gene expression. Des(1-3)IGF-I, an IGF-I analogue with low affinity for IGFBP, had no such effect. Incubation of recombinant human IGFBP-5 with SC conditioned media revealed IGF-I protection of IGFBP-5 from proteolysis, implying the presence of an IGFBP-5 protease in SC conditioned media. Collectively, these data support the concept that, in response to nerve injury, invading macrophages produce IGF-I and SC express the IGF-I receptor, to facilitate regeneration. This regenerative process may be augmented further by the ability of SC to secrete IGFBPs, which in turn may increase local IGF-I bioavailability.
引用
收藏
页码:525 / 536
页数:12
相关论文