Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles

被引:100
作者
Wang, Liwei [1 ]
Huang, Xingyi [1 ]
Zhu, Yingke [1 ]
Jiang, Pingkai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Key Lab Elect Insulat & Thermal Ageing, Dept Polymer Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
BREAKDOWN STRENGTH; HIGH-PERMITTIVITY; NANO-AG; DENSITY; COMPOSITES; CONSTANT; SURFACE; FILMS; CAPACITORS; EPOXY;
D O I
10.1039/c7cp07990g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Introducing a high dielectric constant (high-k) nanofiller into a dielectric polymer is the most common way to achieve flexible nanocomposites for electrostatic energy storage devices. However, the significant decrease of breakdown strength and large increase of dielectric loss has long been known as the bottleneck restricting the enhancement of practical energy storage capability of the nanocomposites. In this study, by introducing ultra-small platinum (<2 nm) nanoparticles, high-k polymer nanocomposites with high breakdown strength and low dielectric loss were prepared successfully. Core-shell structured polydopamine@BaTiO3 (PDA@BT) and core-satellite ultra-small platinum decorated PDA@BT (Pt@PDA@BT) were used as nanofillers. Compared with PDA@BT nanocomposites, the maximum discharged energy density of the Pt@PDA@BT nanocomposites is increased by nearly 70% because of the improved energy storage efficiency. This research provides a simple, promising and unique way to enhance energy storage capability of high-k polymer nanocomposites.
引用
收藏
页码:5001 / 5011
页数:11
相关论文
共 60 条
[31]   Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy [J].
Pashayi, Kamyar ;
Fard, Hafez Raeisi ;
Lai, Fengyuan ;
Iruvanti, Sushumna ;
Plawsky, Joel ;
Borca-Tasciuc, Theodorian .
NANOSCALE, 2014, 6 (08) :4292-4296
[32]   High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks [J].
Pashayi, Kamyar ;
Fard, Hafez Raeisi ;
Lai, Fengyuan ;
Iruvanti, Sushumna ;
Plawsky, Joel ;
Borca-Tasciuc, Theodorian .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (10)
[33]   High-dielectric-constant silver-epoxy composites as embedded dielectrics [J].
Qi, L ;
Lee, BI ;
Chen, SH ;
Samuels, WD ;
Exarhos, GJ .
ADVANCED MATERIALS, 2005, 17 (14) :1777-+
[34]   Anomalous Increase of Dielectric Permittivity in Sr-Doped CCTO Ceramics Ca1-xSrxCu3Ti4O12 (0 ≤ x ≤ 0. 2) [J].
Schmidt, Rainer ;
Sinclair, Derek C. .
CHEMISTRY OF MATERIALS, 2010, 22 (01) :6-8
[35]   High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structuret [J].
Shen, Yang ;
Shen, Dashan ;
Zhang, Xin ;
Jiang, Jianyong ;
Dan, Zhenkang ;
Song, Yu ;
Lin, Yuanhua ;
Li, Ming ;
Nan, Ce-Wen .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) :8359-8365
[36]   Polymer nanocomposites with high energy storage densities [J].
Shen, Yang ;
Lin, Yuanhua ;
Zhang, Q. M. .
MRS BULLETIN, 2015, 40 (09) :753-759
[37]   Ultra High Energy Density Nanocomposite Capacitors with Fast Discharge Using Ba0.2Sr0.8TiO3 Nanowires [J].
Tang, Haixiong ;
Sodano, Henry A. .
NANO LETTERS, 2013, 13 (04) :1373-1379
[38]   Chemical tuning of Coulomb blockade at room-temperature in ultra-small platinum nanoparticle self-assemblies [J].
Tricard, Simon ;
Said-Aizpuru, Olivier ;
Bouzouita, Donia ;
Usmani, Suhail ;
Gillet, Angelique ;
Tasse, Marine ;
Poteau, Romuald ;
Viau, Guillaume ;
Demont, Phillipe ;
Carrey, Julian ;
Chaudret, Bruno .
MATERIALS HORIZONS, 2017, 4 (03) :487-492
[39]   Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation [J].
Tsung, Chia-Kuang ;
Kuhn, John N. ;
Huang, Wenyu ;
Aliaga, Cesar ;
Hung, Ling-I ;
Somorjai, Gabor A. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (16) :5816-5822
[40]  
Ullrich C. A., 2010, PHYSICS, V3, P1