Effect of the hydrothermal synthesis temperature on the capacitive performance of α-MnO2 particles

被引:0
|
作者
Marin-Flores, Alejandra [1 ]
Arce-Estrada, Elsa M. [1 ]
Romero-Serrano, Antonio [1 ]
Rivera-Benitez, Alonso [1 ]
Lopez-Rodriguez, Josue [1 ]
Hernandez-Ramirez, Aurelio [1 ]
机构
[1] UPALM, Inst Politecn Nacl ESIQIE, Mexico City 07738, DF, Mexico
来源
关键词
alpha-MnO2; particles; average surface area; specific capacitance behaviour; SHAPE-CONTROLLED SYNTHESIS; MNO2; NANOSTRUCTURES; SUPERCAPACITORS; NANOPARTICLES; CATHODE;
D O I
10.20964/2022.10.48
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A hydrothermal method was used to synthesise alpha-MnO2 particles, with manganese sulfate as the metal precursor and potassium permanganate as the oxidising agent. The alpha-MnO2 samples synthesised by hydrothermal treatment at 120 degrees C (alpha-120) and 140 degrees C (alpha-140) for 2 h exhibited different sample morphologies. The sample morphology consisted of a mixture of rose-like microflower and needles, and X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) characterisation and Fourier transform infrared spectroscopy (FT-IR) were carried out on both the alpha-120 and alpha-140 samples. The results show that the only MnO2 phase obtained in the synthesis was alpha-MnO2. The electrochemical properties of the samples were analysed by cyclic voltammetry (CV) using a 0.1 M Na2SO4 electrolyte solution at scan rates ranging from 5 to 100 mV s(-1). The specific capacitance of the system was calculated from the CV curves. The ct-120 and ct-140 samples had specific surface areas of 128 m(2) g(-1) and 95 m (2) g(-1), respectively, and specific capacitances at a scan rate of 5 mV s(-1) of 112.8 F g(-1) and 34.86 F g(-1), respectively. The specific capacitance decreased as the scan rate increased for both samples.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors
    Bai, Xianlin
    Tong, Xinglin
    Gao, Yanli
    Zhu, Wanqing
    Fu, Can
    Ma, Jingyao
    Tan, Tianci
    Wang, Chunlei
    Luo, Yongsong
    Sun, Haibin
    ELECTROCHIMICA ACTA, 2018, 281 : 525 - 533
  • [22] Controllable Synthesis of α-MnO2 Nanostructures and Phase Transformation to β-MnO2 Microcrystals by Hydrothermal Crystallization
    Zhang, Xiong
    Yu, Peng
    Wang, Dongliang
    Ma, Yanwei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (02) : 898 - 904
  • [23] The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties
    Su, Tingting
    Zhao, Biao
    Han, Fengqi
    Fan, Bingbing
    Zhang, Rui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (01) : 475 - 484
  • [24] The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties
    Tingting Su
    Biao Zhao
    Fengqi Han
    Bingbing Fan
    Rui Zhang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 475 - 484
  • [25] Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors
    Li, Wenyao
    Xu, Kaibing
    An, Lei
    Jiang, Feiran
    Zhou, Xiying
    Yang, Jianmao
    Chen, Zhigang
    Zou, Rujia
    Hu, Junqing
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) : 1443 - 1447
  • [26] Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods
    Cao, Guangsheng
    Su, Ling
    Zhang, Xiaojuan
    Li, Hui
    MATERIALS RESEARCH BULLETIN, 2010, 45 (04) : 425 - 428
  • [27] Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures
    Subramanian, V
    Zhu, HW
    Vajtai, R
    Ajayan, PM
    Wei, BQ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (43): : 20207 - 20214
  • [28] Hydrothermal Synthesis of MnO2 Microspheres and Their Degradation of Toluene
    Lu, Meijuan
    Ma, Yulian
    Li, Danping
    Jiang, Min
    Yu, Chenglong
    ACS OMEGA, 2023, 8 (51): : 49150 - 49157
  • [29] Hydrothermal synthesis and electrochemical properties of MnO2 nanostructures
    Wang, Ning
    Pang, Hongtao
    Peng, Hongrui
    Li, Guicun
    Chen, Xiguang
    CRYSTAL RESEARCH AND TECHNOLOGY, 2009, 44 (11) : 1230 - 1234
  • [30] Hydrothermal Synthesis of α-MnO2 Nanorods and Their Electrochemical Performances
    Xue Zhao-Hui
    Liu Zhao-Lin
    Ma Fang-Wei
    Sun Li-Ping
    Huo Li-Hua
    Zhao Hui
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2012, 28 (04) : 691 - 697